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METRIC LEARNING

Aim: Learn a better representation of the data that reflects their underlying ge-
ometry. This often leads to the optimization of a matrix M:

argmin Zhide(Iiamj)_l_)\HMH%’
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s.t. Z — hij)dar(zi,z5) > 1

1, 1if x;,x; are similar

where h;; = {

otherwise

0,

dys(.) is a metric that measures the distance or the similarity between a pair of

instances. For instance, it can be instantiated
as a Mahalanobis distance dpys(x1,22) = \/(xl — x9)T M (21 — x2)
or a bilinear similarity dys (21, x2) = 21 Mxs.

Local Metric Learning

In order to deal with non-linearities
and multi-modalities, the instance
space U C R? is decomposed in K
clusters or regions ({R,}£ ;) and, on
each cluster, a local model s, : U? —
R is learned to compare instances be-
longing to that specific cluster.
However, local metric approaches:

1. are sensible to overfitting,
2. are no suited to compare points of different regions,

3. loose continuity in the metric space.

: CONVEX COMBINATIONS OF LocAL MODELS

Let S = {s.(.)}, be a set of (learned) metric functions defined on the regions
{R.}% | of the instance space U. V(R;, R;) = R;; let 11/;; € R® be the vector of
contributions of each local model while estimating the similarity between z; € R;
and zo € R;. The C2LM optimization problem is defined as:

argmin,;, ' 4+ A\ D(11) + X25(11)
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is the mean loss over all training pairs p = (21,22, y(71,72)) € Z = U? x R, and

1

DL

ZJHF

1=1 7=1
i K4
— S:Sj ZJZJ HWZ] WZ’J’HQ
1=1 73=11=19'=

are two manifold regularizers, Ay and Ay are
the corresponding regularization parameters.
D (W) takes into account the prior influence of
each local model and

S(1V) constrains the vectors defined on close
pairs of regions to be similar.

For estimating both regularization terms, we
need to define a distance function between re-
gions. For instance the number of edges of the
shortest path connecting two regions in the Min-
imum Spanning Tree of the complete graph of
region centroids.
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ROBUSTNESS AND (GENERALIZATION BOUND

Algorithmic Robustness An algorithm A is said (H, €(.))-robust, for H € N and
. Z" — R if Z can be partitioned into H disjoint subsets, denoted by {C; ML,
such that the following holds for all sets P € Z":

Vpe PYp € ZVi=1,....H
if p,p’ € C; then |l(p) — I(p")| < e(P)

with /() some loss function used in the algorithm.

Robustness of C2LM
IfVe=1,...,K, s,(.) is 0,-lipschitz w.r.t. the norm ||.||,, C2LM is
(H, 9\@71 + 75 )-robust, with § = max,—1. g 0.,.

H is the covering number of Z: Vp,p' € C;, ||lx1 — 2}, < 71, |2 — 25|, < 71 and
y(z1, 2) —y(@7], 25)| < 72.
Generalization Bound
As C2LM is (H,0+/2v1 + ¥2)-robust and the training set P is obtained from n
ITD draws according to a multinomial random variable, for any 0 > 0 with

probability at least 1 — 0, we have:

2HIn2+2In1/6
T

R'— R < 0V2y1 + 72 +B\/

with B the upper bound of the used loss and n the number of pairs of the dataset.
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Human perception of color distance strongly depends on variations of visual condi-
tions and on camera configuration.
Experimental Setup:

ArrLicATION: PERCEPTUAL COLOR DISTANCE LEARNING

1. Color patches are clustered using k-means.
2. A local model is learned on each region as a Mahalanobis-like distance.

3. C2LM is applied on the learned local models.

Dataset:

41800 pairs of color patches, taken under several viewing conditions and with 4

different cameras, with their reference perceptual distance A F, computed using
the CIEDE2000 color-difference formula based on CIELab space.

Results:
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(a) Results on unseen colors
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(b) Results on unseen cameras

C2LM allows us to learn smoother metrics than using local metric approaches.
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with C2LM.
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2D projection of the contour lines of the metrics, drawn around an arbitrary point in the
RGB space: (left) metric learned using a local metric approach; (right) metric learned




