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Metric Learning
Aim: Learn a better representation of the data that reflects their underlying ge-
ometry. This often leads to the optimization of a matrix M:

argminM

∑
i,j

hijdM (xi, xj) + λ ‖M‖2F

s.t.
∑
i,j

(1− hij)dM (xi, xj) ≥ 1

where hij =

{
1, if xi, xj are similar

0, otherwise

dM (.) is a metric that measures the distance or the similarity between a pair of
instances. For instance, it can be instantiated

as a Mahalanobis distance dM (x1, x2) =
√

(x1 − x2)TM(x1 − x2)
or a bilinear similarity dM (x1, x2) = xT1Mx2.

Local Metric Learning

In order to deal with non-linearities
and multi-modalities, the instance
space U ⊂ Rd is decomposed in K
clusters or regions ({Rz}Kz=1) and, on
each cluster, a local model sz : U2 →
R is learned to compare instances be-
longing to that specific cluster.
However, local metric approaches:

1. are sensible to overfitting,

2. are no suited to compare points of different regions,

3. loose continuity in the metric space.

C2LM: Convex Combinations of Local Models

Let S = {sz(.)}Kz=1 be a set of (learned) metric functions defined on the regions
{Rz}Kz=1 of the instance space U . ∀(Ri, Rj) = Rij let Wij ∈ RK be the vector of
contributions of each local model while estimating the similarity between x1 ∈ Ri

and x2 ∈ Rj . The C2LM optimization problem is defined as:

argminW R̂l + λ1D(W ) + λ2S(W )

s.t. ∀i, j = 1, ...,K :

K∑
z=1

Wijz = 1 andWij ≥ 0

where

R̂l =
1

n

K∑
i=1

i∑
j=1

∑
p∈Rij

∣∣∣∣∣
K∑

z=1

Wijzsz(x1, x2)− y(x1, x2)

∣∣∣∣∣
is the mean loss over all training pairs p = (x1, x2, y(x1, x2)) ∈ Z = U2 × R, and

D(W ) =

K∑
i=1

i∑
j=1

∥∥ET
ijWij

∥∥2
F

S(W ) =
K∑
i=1

i∑
j=1

K∑
i′=1

i′∑
j′=1

Kiji′j′ ‖Wij −Wi′j′‖22

are two manifold regularizers, λ1 and λ2 are
the corresponding regularization parameters.
D(W ) takes into account the prior influence of
each local model and
S(W ) constrains the vectors defined on close
pairs of regions to be similar.

For estimating both regularization terms, we
need to define a distance function between re-
gions. For instance the number of edges of the
shortest path connecting two regions in the Min-
imum Spanning Tree of the complete graph of
region centroids.

Robustness and Generalization Bound
Algorithmic Robustness An algorithm A is said (H, ε(.))-robust, for H ∈ N and
ε : Zn → R if Z can be partitioned into H disjoint subsets, denoted by {Ci}Hi=1,
such that the following holds for all sets P ∈ Zn:

∀p ∈ P,∀p′ ∈ Z,∀i = 1, ...,H

if p, p′ ∈ Ci then |l(p)− l(p′)| ≤ ε(P )

with l() some loss function used in the algorithm.

Robustness of C2LM
If ∀z = 1, ...,K, sz(.) is θz-lipschitz w.r.t. the norm ‖.‖2, C2LM is

(H, θ
√

2γ1 + γ2)-robust, with θ = maxz=1..K θz.

H is the covering number of Z: ∀p, p′ ∈ Ci, ‖x1 − x′1‖2 ≤ γ1, ‖x2 − x′2‖2 ≤ γ1 and
|y(x1, x2)− y(x′1, x

′
2)| ≤ γ2.

Generalization Bound

As C2LM is (H, θ
√

2γ1 + γ2)-robust and the training set P is obtained from n
IID draws according to a multinomial random variable, for any δ > 0 with

probability at least 1− δ, we have:

|Rl − R̂l| ≤ θ
√

2γ1 + γ2 +B

√
2H ln 2 + 2 ln 1/δ

n

with B the upper bound of the used loss and n the number of pairs of the dataset.

Application: Perceptual Color Distance Learning

Human perception of color distance strongly depends on variations of visual condi-
tions and on camera configuration.
Experimental Setup:

1. Color patches are clustered using k-means.

2. A local model is learned on each region as a Mahalanobis-like distance.

3. C2LM is applied on the learned local models.

Dataset:

41800 pairs of color patches, taken under several viewing conditions and with 4
different cameras, with their reference perceptual distance ∆E00 computed using
the CIEDE2000 color-difference formula based on CIELab space.

Results:

C2LM allows us to learn smoother metrics than using local metric approaches.
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2D projection of the contour lines of the metrics, drawn around an arbitrary point in the
RGB space: (left) metric learned using a local metric approach; (right) metric learned

with C2LM.


