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Introduction

Machine learning is a field of Artificial Intelligence which encompasses algorithms
allowing a computer to perform a task without being manually programmed for.
In general, the structure and characteristics of a dataset of collected examples
are analyzed in order to extrapolate new information, estimate the probability of
certain events and make decisions accordingly. A typical machine learning task is
the so-called classification: starting from a set of observations (e.g. text corpora)
associated to a target result (e.g. the author), it is possible to learn to predict the
results for new observations (e.g. the author of anonymous documents). In practice,
mathematical models are inferred to represent the relationships between inputs and
expected values or, in general, to estimate the unknown mechanism that generates
the data.

Usually, the problems are tackled by formulating them mathematically: the data is
represented as points in a feature space, where each feature (or dimension) measures
a particular attribute of the instances; the desired learning goal is described by
a function which guides the model training. The training data is not simply
memorized. As we have access to a limited sample of the underlying distribution of
the examples, memorizing the training sample would result in poor performance
when faced to new situations. Instead, useful information is extracted from the
given dataset in order to generalize well on future data, i.e. have good performance
on any sample from the unknown distribution.

Examples of applications of machine learning algorithms can be found in various
fields, from Computer Vision (for object tracking, face recognition, etc.) to Signal
Processing (e.g. speech recognition) and so on, leading to complex systems inte-
grating different machine learning components, such as virtual personal assistants
and autonomous vehicles. Machine learning algorithms are particularly helpful and
preferable to their analytical counterparts in the following situations:

• The problem is hard to describe exactly, hence no analytical methodology is
available to solve it. An example is the task of object detection in pictures.
As the objects and the concepts defining them are not easily depicted (in the
sense that possible descriptors cannot be translated from natural language
to exhaustive logical forms) and visual conditions vary the characteristics
of objects, no exact methods exist for these problems even though object
detection is an innate skill of human beings.

• It is faster and cheaper to learn a refined solution than to hard-code it, because
the latter requires more human expertise and hard-working. In computer
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2 Introduction

graphics, for instance, it might be more practical to learn how to generate
diverse procedural textures than to define all the variety manually.

• The problem may vary with time. Consider the case of evasion attacks to
spam mail detectors. Attackers constantly adapt to system changes to keep
eluding the filter and machine learning solutions offer dynamic ways to account
for this concept drift.

There exist several paradigms for solving these complex tasks. This dissertation
focuses on enhancing local learning approaches, a family of techniques that infers
models by capturing the local characteristics of the space in which the observations
are embedded. The founding assumption of these techniques is that the learned
model should behave consistently on examples that are close, implying that its
results should also change smoothly over the space. The locality can be defined
on spatial criteria (e.g. closeness according to a selected metric) or other provided
relations, such as the association to the same category of examples or a shared
attribute.

Local learning approaches are known to be effective in capturing complex distri-
butions of the data, avoiding to resort to selecting a model specific for the task.
However, state of the art techniques suffer from three major drawbacks: they easily
memorize the training set, resulting in poor performance on unseen data; their
predictions lack of smoothness in particular locations of the space; they scale poorly
with the size of the datasets. The contributions of this dissertation investigate the
aforementioned pitfalls in two directions: we propose to introduce side information
in the problem formulation to enforce smoothness in prediction and attenuate the
memorization phenomenon; we provide a new representation for the dataset which
takes into account its local specificities and improves scalability.

Context of the thesis This thesis was carried out in the Data Intelligence
team of Laboratoire Hubert Curien UMR CNRS 5516, affiliated to Jean Monnet
University of Saint-Etienne and University of Lyon, France. Its works were founded
by the french National Research Agency through the ANR projects SOLSTICE1

(ANR-13-BS02-01), which aims at designing new models and tools for dealing
with computer vision tasks, and LIVES2 (ANR-15-CE23-0026-03), which aims
at developing well-founded machine learning frameworks for learning with data
observed in multiple views.

1https://solstice.univ-st-etienne.fr/
2https://lives.lif.univ-mrs.fr/

https://solstice.univ-st-etienne.fr/
https://lives.lif.univ-mrs.fr/
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Outline of the dissertation This manuscript is organized in three principal
parts and several appendices. For the sake of consistency, the main body of the
dissertation covers the contributions related to local learning. Other relevant
contributions are summarized below and are fully reported in the appendices.

Part I gives an overview of the scientific context and of the state of the art relevant
to the presented works:

• Chapter 1 introduces the Statistical Learning field, with its assumptions
and principles, as well as its challenges and practices. More precisely, it
details the workflow for learning statistical models capable of describing the
observations at hand and performing well on unseen data, along with the
generic frameworks for studying the generalization capabilities of a learned
model, beyond its empirical performance;

• Chapter 2 presents the principal solutions for empowering linear models,
which take advantage of the scalability of linear models while being able to
capture complex data distributions. The chapter particularly focuses on local
learning approaches, to which the contributions of this dissertation belong,
and highlights their intuitions, advantages and pitfalls.

Part II collects the contributions on local learning based on data partitioning:

• Chapter 3 describes a new metric learning method for overcoming the well
known issues of local metric learning, namely their tendency to over-fit and
their limited applicability. The approach learns for each pair of regions
of the input space convex combinations of previously learned local models.
Additionally, smoothness in prediction is enforced by a spatial regularization
which encourages models of nearby regions to be similar. The goal is to obtain
a similarity or distance for comparing any pair of points which is adapted to
the regions the points belong to. A theoretical evaluation of the proposed
approach is carried out following the framework of algorithmic robustness for
deriving generalization bounds. Moreover, the method is compared empirically
to state-of-the-art techniques in terms of regression accuracy on two regression
tasks. This work led to the CVPR16 [219] and CAp16 [216] publications.

• Chapter 4 proposes a novel decentralized technique for collaboratively learning
personalized models over a graph of users which is both effective and commu-
nication efficient. The learning problem takes the form of a graph-regularized
l1-Adaboost able to build expressive nonlinear models that take into account
the singularities of the data of each user but also tend to follow the decisions
of neighboring users in the graph. The associated optimization problem jointly
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minimizes the overall empirical error while ensuring the smoothness of the
users’ models with respect to the similarity graph. We propose a decentralized
algorithm based on the Frank-Wolfe algorithm, exploiting the intrinsic sparsity
of the updates to obtain an efficient collaborative learning procedure with low
communication cost. Furthermore, a graph discovery procedure is proposed
to estimate the similarity graph between users if unknown. The algorithm is
analyzed with respect to its convergence rate, and communication and memory
complexities. Finally, a set of experiments is carried out on a toy dataset to
show the efficacy of the proposed method both at learning the personalized
models and at estimating the communication graph. These contributions were
presented at CAp18 [215] and at MLPCD18.

Part III gathers the contributions based on landmark similarities:

• Chapter 5 addresses the pitfalls of kernel methods by introducing a local
Support Vector Machines method which clusters the input space, projects the
data on landmarks, and jointly learns a linear combination of local models.
The approach defines an explicit mapping to a latent space where the problem
is linearly separable. Doing so, the approach exhibits better scalability than
standard SVMs based on kernel functions. Using the framework of uniform
stability, we show that our SVM formulation comes with generalization guar-
antees on the true risk. The experiments based on the simplest configuration
of our model (i.e. landmarks randomly selected, linear projection, linear kernel)
show its competitive performance w.r.t. the state of the art and opens the door
to new exciting lines of research. This work was presented at CAp17 [220].

• Chapter 6 expands the method proposed in Chapter 5 to a multi-view clas-
sification setting. The goal is to leverage the complementary information of
the different views and to linearly scale with the size of the dataset. The
similarity estimates w.r.t. a small set of randomly selected landmarks are
carried out one view at a time, before learning a linear SVM in this latent
space joining all the views. According to the uniform stability framework,
the proposed algorithm is robust to slight changes in the training set, which
leads to a generalization bound that depends on the number of views and
landmarks. The chapter shows how the described approach can be easily
adapted to a missing-view scenario by only reconstructing the similarities to
the landmarks. The empirical results, both in complete and missing view
settings, highlight the superior performance of the proposed method w.r.t.
state of the art techniques, in terms of accuracy and execution time. This
work was published at ECML18 [221].
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In the Appendices IV, we report two contributions developed during the thesis but
unrelated to local learning line of works:

• Appendix A presents a generic framework for learning from weakly labeled data.
This field covers different settings such as semi-supervised learning, learning
with label proportions, multi-instance learning, noise-tolerant learning, and
so on. The appendix introduces a new risk formulation which boils down to a
generalization of the standard empirical risk based on surrogate margin-based
loss functions. The new risk allows one to express the reliability on the
labels in the objective function and can be utilized to derive different kinds of
learning algorithms, depending on the knowledge on the labels. These works
were published at NeurIPS16 [217].

• Appendix B introduces a new defense method against adversarial evasion
attacks on Deep Neural Networks, based on practical observations. The
proposed defense is easy to integrate into models and performs better than
state-of-the-art defenses: it is meant to reinforce the structure of a DNN,
making its prediction more stable and less likely to be fooled by adversarial
samples. The appendix reports an extensive experimental study proving
the efficiency of the method against multiple attacks, in comparison with
numerous defenses, both in white-box and black-box setups. The work led to
a publication at AISEC17 [222] and to the release of the open-source library
ART [145] for studying the adversarial robustness of DNNs.

Finally, we report notions and proofs necessary to the completeness of three chapters:

• Appendix C reports the derivations of tight Lipschitz constants for two
families of metrics that we utilize in Chapter 3: Mahalanobis-like distances
and bounded-space bilinear forms. The appendix reports the pre-print [218].

• Appendix D reports the derivation of the upper bound of product space
curvature needed in Chapter 4.

• Appendix E reports the derivation of the Lagrangian dual problem and some
supplementary material related to Chapter 5.
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1
Statistical Machine Learning

We start this manuscript by giving an overview of the scientific context of this
thesis: the Statistical Learning field encompasses all techniques aiming at inferring a
predictive function from the data using statistical tools. The chapter will go through
the main notions and practices of learning, from a finite number of observations,
statistical models that are capable of performing the same task on future data. We
will see that generic algorithms are usually deployed for learning a model suited for
the available data. Nevertheless, several decisions have to be made to ensure that
the learned models (i) fit the training instances and (ii) generalize to unseen ones.
Firstly, the collected data needs to be representative of the task, and, sometimes,
needs to be preprocessed in order to filter the information useful for learning or
to reduce the complexity of the algorithm. Secondly, a learning algorithm has
to be selected: this includes setting the class of functions among which the final
model is chosen for the approximation, and setting the optimization technique for
searching over the space of possible solutions. Moreover, a metric of performance
and an objective function are formulated to guide the learning, by specifying the
desired characteristics of the final model. Thanks to these measures, an empirical
evaluation of the model is carried out throughout the learning process, both for
guiding and monitoring the fitting and for estimating how the obtained model will
perform on future data. In order to obtain an estimate of the actual generalization
capabilities of the learned model, the empirical study is performed by splitting
the training sample into two and by testing the model on the subset which is not
used for fitting the model. In a second moment, we will introduce two frameworks
for studying the generalization capabilities of the learned model: the Probably
Approximately Correct generalization bounds and the Adversarial Robustness. Both
approaches rely on considerations independent from the empirical performance of
the model at executing the desired task. Overall, they offer practical tools to assess
the generalization properties of the learned model and give some insights into why
or why-not would a model generalize.

This overview of Statistical Learning is not meant to be exhaustive: many concepts
will be only quickly cited, others omitted, while we will dwell on all the elements
necessary to the comprehension of the contributions of this thesis.

This chapter is structured as follows: in Section 1.1, we describe the key elements
of statistical learning and illustrate how they are commonly combined for learning

13



14 Chapter 1. Statistical Machine Learning

models with good performance; we, then, present the theoretical and empirical
frameworks for assessing the generalization of a model, beyond its performance at
test time in Section 1.2.

1.1 Statistical learning generalities

Statistical Learning techniques learn to perform a task from data using statistical
tools. While it is commonly called machine learning, there is still much human
expertise and supervision put into the process. Data must be collected, analyzed
and preprocessed in order to select a good family of models and an appropriate
metric of performance for optimization and evaluation. In this section, we introduce
the key elements influencing the quality of the learned model, supposing infinite
resources and time.

1.1.1 Data

The arguably fundamental component of Machine Learning is data. Unlike a
manually programmed procedure, “a ML model is only as good as the data it is
fed”1. Machine learning models are learned from data, i.e. samples collected in a
consistent way, that the learning algorithm will try to fit, i.e. to describe. It is often
said that it was not until the era of big data that ML could finally strive. However,
having hands on huge amounts of data is not enough to obtain high quality models.
As a matter of fact, the learned model is expected to perform well on any point
drawn from an unknown underlying distribution of the data that corresponds to
the task. For this reason, it is fundamental that the sample S used for training is
representative of the data distribution: strongly biased data leads to biased models.
The story of the failure of tank detection system [214] is a monitor of how poorly
selected data inevitably gives a model incapable of performing the wanted task2 (it
might perform another one). Sometimes, bias in data is inevitable and the learning
algorithms should account for it. For instance, considering inclusivity and fairness of
the results, the algorithm should not incur in representation disparity and disparity
amplification issues [122]. Consider the case of risk assessment3: predictions made
by an overall high-quality model might be incorrect on minority groups.

The knowledge on the collected dataset influences the choice of approach for learning.
There exist several learning paradigms:

1Reynold Xin, https://jaxenter.com/apache-spark-machine-learning-interview-143122.
html

2another example https://www.wired.com/2009/12/hp-notebooks-racist/
3www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing

https://jaxenter.com/apache-spark-machine-learning-interview-143122.html
https://jaxenter.com/apache-spark-machine-learning-interview-143122.html
https://www.wired.com/2009/12/hp-notebooks-racist/
www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
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Supervised Learning This setting tackles problems that can be formulated as
mapping input observations to output labels. The dataset in this setting is composed
of annotated examples S = {zi = (xi, yi) ∈ Z}mi=1, from which the algorithm learns
to predict the target output yi from the given input xi. When the domain of possible
outcomes Y is discrete, the mapping is called classification, because it corresponds
to affecting a class, or category, to each of the observations. A special case is
binary classification, where the output space is limited to two outcomes (usually
represented as {−1, 1} for practical reasons) and the task generally boils down to
distinguishing the objects belonging to a category from those which do not. On
the contrary, whenever Y is continuous, the problem becomes predicting an output
as close as possible to the target one, task referred to as regression. The most
famous regression technique, widely deployed across scientific fields, is the method
of (Regularized) Least Squares, which fits a model by finding the parameters that
optimize the sum over all training examples of the squared differences between the
predicted outputs and the target ones.

Unsupervised Learning In contrast to the previous setting, unsupervised learn-
ing comprises problems where no supervision, i.e. no target labels, is provided in
the dataset. Hence, this line of research focuses on finding particular patterns in
the data, to better analyze it or to subsequently perform other tasks. Clustering
techniques belong to this paradigm: their goal is to partition the dataset into
groups based on a similarity criterion. For instance, the well-studied algorithm
K-means [124] finds K mean points (or centroids) in X that together minimize the
sum of squared distances between any point of the dataset and its closest mean
point. After training, data is partitioned into K clusters by affecting a point to the
cluster with the closest centroid.

Weakly Labeled Learning This paradigm deals with datasets where weak
supervision is provided, in the sense of the availability of labels and their reliability.
Because it may be expensive and tricky to assign a reliable and unique label to
each training instance, the data at our disposal for the application at hand may be
weakly labeled. Learning from weak supervision has received important attention
over the past few years [91, 118]. This research field includes different settings:
only a fraction of the labels are known (Semi-Supervised learning [229]); we can
access only the proportions of the classes in predefined groups (Learning with Label
Proportions [154] and Multi-Instance Learning [54]); the labels are uncertain or
noisy (Noise-Tolerant Learning [3, 141, 153]); different discording labels are given
to the same instance by different experts (Multi-Expert Learning [169]). As a
consequence of this statement of fact, the data provided in all these situations
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cannot be fully exploited using supervised techniques, at the risk of drastically
reducing the performance of the learned models. Recently, specific techniques have
been proposed to deal with each of the previously cited scenarios [118, 141], but
also few generic approaches [153, 217].

Reinforcement Learning Reinforcement learning techniques try to mimic the
trial-and-error learning mechanism of living beings. More precisely, the system
learns, by a trial-and-error search, which actions should be executed in a given
situation in order to maximize a reward, which is not immediate but delayed. This
paradigm differs from all others because (i) the supervision is not fixed a priori, but
comes from experience by exploration-exploitation policies, and (ii) the focus is not
on finding hidden structures in the data. We invite the interested reader to refer
to [178] for a thorougher presentation of this setting.

In the scope of this thesis, we focus on the supervised learning setting, even though
all contributions might be extended to the weakly labeled setting following our
works reported in Annex A. Moreover, data is represented by feature vectors and
the training samples are supposed to be independently and identically drawn (i.i.d.)
from the true distribution D.

1.1.2 Model

Machine Learning approaches consist in learning a mathematical model able to
explain the data. Generally, we make the implicit assumption that the underlying
distribution of the data can be described by a model, so that, ultimately, learning
is finding the best approximation of this true model. In the supervised learning
setting, ML models are called predictive models, because they make predictions on
new examples based on the information extracted from training data. Predictions
usually take the form of scalars or vectors of values.

Definition 1.1 (Predictive Model) A predictive model is a mathematical model that
captures some properties from the data and, consequently, returns a prediction, or
decision, for an input point.

However, a universal approximator, expressing all kind of relationships within the
data, has not been conceived until now, so assumptions need to be made before
beginning the modeling process. Specifically, a family of hypotheses has to be
selected based on prior knowledge or analysis of the data.

Definition 1.2 (Hypothesis class) A hypothesis class or family C is the set of candidate
models from which the learning algorithm selects the most suitable model for the
task.
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The chosen hypothesis family can be finite or infinite, and contain heterogeneous or
homogeneous models. Usually, the hypothesis class consists of a set of models sharing
a fixed common architecture and a set of variable parameters which characterize
them4. In this context, learning boils down to selecting the model with the best
values for the parameters, i.e. optimizing their values.

Let us examine one of the simplest hypothesis family for binary classification: the
set of linear classifiers. An hypothesis from this family bases its decisions on a linear
combination of the feature values of the training points:

f(x) = sign(〈θ,x〉+ b)

with θ ∈ Rd the vector of weights assigned to each feature and b ∈ R the offset. θ
and b describe a unique hyperplane in the input space and are the parameters of
this family of hypotheses. The hyperplane, or decision boundary, splits the input
space into two subspaces, each assigned to one of the two classes, so that the points
belonging to a subspace will be all assigned to that class. Figure 1.1 gives an
example of linearly separable data, i.e. a dataset that can be separated by a linear
classifier making no errors. Notice that there may exist multiple hyperplanes that
separate perfectly the training examples of the two classes. Yet, they might not
perform equally well on unseen examples, as the amount of training data is limited
and some regions of the class manifolds are not represented. In such scenarios, it is
preferable to select the model with the largest margin, i.e. the maximal distance
with the closest points to the hyperplane, to guarantee the best generalization error.

Figure 1.1 – On the left, linearly separable data can be classified perfectly by at least one
linear separator. On the right, a linear classifier is not able to separate the two classes
when the class distributions present multi-modalities and non-linearities.

A linear separator does not intrinsically modify the representation of the data as
it can only select and re-weight the features of the input space. Consequently, it
performs well only on problems where the data representation is naturally, or by

4with the exception of non-parametric models which infer their decisions directly from the
training data.
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design, appropriate for the task. For instance, the XOR distribution shown in
Figure 1.1 cannot be classified correctly by a linear classifier in the original space. It
is possible, however, to linearize the problem by applying non-linear transformations
on the input space: in this case, by multiplying the two features. There exist more
complex models that allow one to learn a separator and a representation suitable
to the task at the same time, such as Deep Neural Networks (DNN), which we
describe in Annex B, and kernel methods, which we introduce in the next chapter
and utilize in the second body of contributions of this manuscript, in Part III.

Choosing the appropriate hypothesis family is, in general, a delicate task, even
in autoML works [63, 183], which automatize most of the steps of the learning
procedure. Several criteria need to be considered (e.g. its scalability), but, above all,
its expressiveness, which determines how well the model will fit the data distribution.
A well-studied question on model expressiveness is the adjustment of its complexity,
known under the name of bias-variance trade-off: over-simple models (large bias)
are unable to capture the data distribution while over-complex ones (large variance)
are able to adapt to the noise in the training sample. Both complementary sources
of error prevent the learning algorithm from generalizing to unseen data and should
be limited by carefully balancing them (see Figure 1.2). In the following, we show
how this trade-off can be controlled in the objective function.

Figure 1.2 – Intuitive illustration of the bias-variance trade-off. Picture taken from
http: // blog. sleptons. com/ 2016/ 04/ bias-and-variance-in-modeling. html .

1.1.3 Objective Function

Another fundamental element for learning is the formulation of the objective function
that shapes the exploration for the best model. Indeed, a metric of performance
needs to be chosen to evaluate the quality of any solution f in the hypothesis class
C. Because it might be hard to optimize the chosen metric directly, a corresponding

http://blog.sleptons.com/2016/04/bias-and-variance-in-modeling.html
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loss function is minimized instead which penalizes the model’s errors on the training
examples. This loss function has to be selected carefully in order to guarantee a
good approximation of the metric and, at the same time, a competitive speed-up of
the problem resolution. In the supervised learning setting, a loss function assesses
the agreement between predicted and target values, by affecting high costs to
inadequate predictions and low costs to good ones.

Definition 1.3 (Loss function) A loss or cost function ` : C × Z → R+ maps any
solution f ∈ C, applied to point z ∈ Z, to a nonnegative real number.

Consider, for instance, the case of binary classification. Ideally, the best classifier
would be the one scoring the minimal classification error, for which we count one
error for every misclassified example I(f(z) 6= y). However, the so-called 0-1 loss is
not convex, not differentiable and has zero gradient, which makes it impracticable
for optimization. Therefore, other loss functions, called surrogate losses, which are
convex and smooth relaxations of the 0-1 loss, are commonly employed instead.
Most of them are margin-based (see Figure 1.3), i.e. they penalize the disagreement
between target and predicted values measured by the sample margin yf(z). Few
examples are the logistic loss (e.g., for the logistic regression [46]), the exponential
loss (e.g., for boosting techniques [69]) and the hinge loss (e.g., for the SVM [49]).
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hinge max(0, 1− yf(z))
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square (1− yf(z))2

Figure 1.3 – Illustration of the shapes of common surrogate margin-based losses used in
binary classification.

For obvious reasons, one must carefully choose the metric of evaluation and the
loss function, depending on the task at hand. For instance, accounting exclusively
for the accuracy rate, and consequently minimizing the error rate, might result in
constantly predicting one label in a class-imbalanced setting, where one class is
predominant [48].
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Once the loss is set, a common approach for choosing the optimal hypothesis f∗

from a hypothesis class C is to select the classifier that minimizes the expected
risk over the underlying distribution of the data D defined over the joint space
Z = X ×Y .

Definition 1.4 (True risk) Given a loss ` and a data distribution D, the true risk of
any hypothesis f ∈ C is defined as follows:

RD(f) = Ez∼D`(f , z).

In practice, as the true distribution is unknown, the true risk cannot be evaluated
exactly and an estimate, using the finite training sample S, is optimized instead.
This setting goes under the name of Empirical Risk Minimization (ERM).

Definition 1.5 (Empirical risk) Given a loss ` and a sample S = {zi}mi=1 drawn
identically and independently (i.i.d.) from D, the empirical risk of any hypothesis
f ∈ C is defined as follows:

R̂S(f) = Ez∼S`(f , z) = 1
m

m∑
i=1

`(f , zi).

Minimizing the empirical risk corresponds to minimizing the true risk if the training
sample S has infinite instances. However, as in practice we work on an approximation
of the problem, using a finite amount of data, it is fundamental to study how different
the found solution (arg minf R̂S(f)) is from the true one (arg minf RD(f)) and
ultimately how it performs on new instances from the distribution of data (how it
generalizes). As a matter of fact, a hypothesis with good performance on S (even
perfect R̂S(f) = 0) might generalize poorly. In Section 1.2 we will illustrate how
one can theoretically relate the empirical risk of a model to its true risk.

From a practical perspective, it is necessary to add constraints, hard or soft, called
regularization terms, to the problem formulation in order to prevent memorization,
i.e. finding a model that only explains the training sample and has poor performance
on unseen examples. In order to avoid over-fitting, the phenomenon of having the
true risk much larger than the empirical risk, and because it is harder to control
directly the complexity of the family of hypotheses, a common practice is to use an
lp-norm on the parameters of the model to limit its complexity. Such a practice
follows the Occam’s razor principle, by which a model with reduced complexity is
less likely to over-fit the data, as it lacks the expressiveness for it. The Regularized
Risk Minimization takes the following form:

min
f∈C

R̂S(f) + λ ‖f‖

where λ ∈ R+ is a hyper-parameter controlling the trade-off between minimizing the
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empirical risk (expressive solution) and minimizing the complexity of the solution
(simple solution).

Table 1.1 – Examples of lp-norms for vectors and matrices.

Name Formula Comments

l1-norm
∥∥∥x∥∥∥

1
=
∑
j |xj | sparsity-inducing, convex, non-smooth

l2-norm ‖x‖2 =
√∑

j x
2
j convex, smooth

lp-norm ‖x‖p =
(∑

j x
p
j

) 1
p convex for p ≥ 1

Frobenius norm ‖A‖F =
√∑

i,j Aij2 convex, smooth

In Table 1.1, we report a few examples of lp-norms for vectors and matrices that
we will utilize throughout this manuscript, along with their characteristics and
consequences of their deployment.

On the other hand, by giving too much weight to the regularization term, we might
encounter the opposite and equally undesired situation of under-fitting the data. It
is necessary, then, to tune the hyper-parameters of the objective function using a
cross-validation scheme, as we will see later in this section.

Finally, other terms can be added to the objective function to inject additional
information and prior knowledge on the task (see Chapters 3 and 4 for two examples)
in order to improve the learning and avoid undesired results [116].

1.1.4 Optimization

For most problems a closed-form solution is not available or is impracticable
(e.g. requiring to compute too large matrix inversions), which means that the
space of hypotheses C needs to be explored. Even for a finite C, checking the
objective function value for any hypothesis in the family is not feasible and a
smarter exploration needs to be deployed. Several optimization techniques are at
our disposal for finding the minimizer of the objective function starting from an
initial solution. We present two of the most-used first-order iterative techniques:
Gradient Descent (GD) and Frank-Wolfe (FW) algorithms.

Gradient Descent finds the minimum of a function R(f) by iteratively moving the
current solution in the opposite direction of the gradient of the function ∇fR with
a small step γ ∈ R+ (called learning rate):

fi+1 = fi − γ∇fR(fi).

The idea is that the current solution should be improved by searching in the
steepest direction with a displacement that depends on the local slope of the
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curve (see Figure 1.4 for an intuitive illustration). The algorithm can be stopped
when the improvement, in terms of minimality of the function, is small enough
(R(fi)−R(fi+1) ≤ ε). There exist many extensions to the basic algorithm, designed
to improve its convergence. We invite the reader to refer to [161] for a survey.

Figure 1.4 – Illustration of the first iterations of Gradient Descent applied to a mock
function R(f).

The second algorithm is named after the authors who first proposed it in [65]. FW
technique iteratively updates the approximate solution by moving it towards the
minimizer of the linearized objective function. As shown in Figure 1.5, at each
iteration, it selects the minimizer s of the hyper-plane described by the gradient of
the function at the current solution, which, by construction, lies on the boundary
of the solution domain:

si+1 = arg min
f∈C

∇fR(fi)T f

fi+1 = (1− γ)fi + γsi+1.

For convergence, the learning rate γ ∈ [0, 1] should decrease with the number of
iterations. Faster variants of FW are available and have been analyzed recently
in [105].

The advantages of FW w.r.t. GD are that there is no need for projecting the solution
back to the feasible domain (whenever the current solution lies outside it) and that
the iterations can be sparse when l1 constraints are added to the problem.

Notice that the optimization technique affects the performance of the learning
process not only in terms of execution time, but also in terms of quality of the model.
As a matter of fact, the optimization procedure allows to find an approximation
of the exact solution, which can be more or less tight. Reconsider, for instance,
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Figure 1.5 – Illustration of one iteration of Frank-Wolfe applied to the same mock function
R(f) as in Figure 1.4 starting from the last approximate solution.

the role of the learning rate in GD technique: if the learning rate is too large, the
optimization might never find the optimum and keep oscillating around it. Moreover,
when working with non-convex objective functions and/or non-convex feasible sets,
multiple local optima, plateaux and saddle points might exist and the algorithm
could get stuck in those regions and never find the global minimum. This last issue
can be solved by running the algorithms several times with different initializations
and by ensuring that the solution space is explored even after reaching a local
minimum.

1.1.5 Overall Learning Pipeline

Once the data is available and the model, objective function and optimization
technique have been chosen, a few good practices are necessary to verify that the
learned model (i) fits the training data and (ii) performs well on new data. The
typical work-flow encompasses the several main steps that we quickly introduce
here.

Sampling In order to get an empirical estimation of the generalization capabilities
of the learned model, a testing sample must be randomly sampled from the dataset,
which is not used for training the model and on which the final model is evaluated.
The splitting into training and testing sets can be performed more than once, to
get a more accurate evaluation of the performance of the final model. From the
training set, we will also sample the so-called validation sets, that are used to check
the performance of the algorithm all along the learning process.
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Data Preprocessing Raw data might contain examples missing certain attribute
values that must be cleaned before learning. This can be done by either removing
that attribute from the entire dataset or by imputing the missing values. In
this preliminary phase, it might be useful to modify the input space by applying
dimensionality reduction techniques, such as Principal Component Analyses (PCA)
and Linear Discriminant Analysis (LDA), that help in selecting meaningful features
or in creating new ones. Another important step is the rescaling of the different
features of the input space to balance their influence in the learning process.
Depending on specific needs, one might apply a min-max scaling, in order to rescale
each feature to the same range, or standardize each attribute to get zero-mean and
one-variance per attribute. It is worth noting that any preprocessing applied to the
training sample must invariantly be applied to the testing sample as well.

Hyper-Parameter Tuning Before training the final model, it is necessary to fix
the values of the different hyper-parameters of the chosen family of hypotheses and
those of the objective function, if there are any. In order to select the most suitable
values for the task (those allowing to reach the best test performance), the tuning
should be carried out through a cross-validation procedure. Cross-validation consists
in repeatedly splitting the training set into another training sample and a validation
sample and, for each split, training the model on the new training sample and test it
on the validation one. Such procedure is executed for several combinations of values
of the hyper-parameters, found using a Grid search, a random search or smarter
techniques, such as Gaussian Processes. The combination with the best validation
performance, averaged over all the splits, is retained for the final training. Usually
k-fold splits are performed, by repeating the training-validation routine k times,
with a ratio training sample size over validation sample size equal to k− 1, and by
taking a different 1

k fraction of the examples for validation.

Evaluation A systematic evaluation of the learning process and final model must
be carried out throughout the learning in order to guide the procedure and to obtain
a reliably good model. According to the problem, different metrics of performance
should be assessed, such as the accuracy score (or classification error) or F1 measure
for classification, the mean squared error for regression, and so on.

1.2 Generalization guarantees

Apart from a rigorous empirical evaluation of a model, it is interesting to assess its
generalization capabilities from other perspectives. As a matter of fact, the learning
process is carried out on a limited set of examples: it cannot be guaranteed that the
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final model has good performances on any sample drawn from the underlying data
distribution. In this section, we present two general approaches that try to study
how well a model generalizes, and somehow try to theoretically explain why that is
the case. Both approaches are based on the principle that models are supposed to
have similar performances on similar points, thus on similar samples such as the
ones drawn from the same distribution.

1.2.1 Generalization Bounds

An hypothesis that achieves low risk on the training sample is not guaranteed to
have also low test risk and, in general, to generalize to unseen examples drawn from
the true distribution of the data. Over the years, several frameworks have been
proposed to provide theoretical guarantees on the generalization capabilities of a
learned model. Such guarantees are expressed in the form of upper bounds, called
generalization bounds, on the gap between the true risk RD and the empirical risk
R̂S and depend on several criteria varying from framework to framework. We refer
to these bounds as Probably Approximately Correct (PAC) [96, 188] because they
stand for a given generalization gap ε ∈ R+ with a certain probability δ ∈ (0, 1] (ε
and δ being negatively correlated) as follows:

P
(∣∣∣RD − R̂S ∣∣∣ ≥ ε

)
≤ 1− δ.

Uniform Convergence The seminal work of Vapnik and Chervonenkis [192, 193]
offers a way to derive a generalization bound using a measure of the capacity (or
complexity) of the hypothesis class: the VC-dimension. For a binary classification
task, the VC-dimension of a hypothesis family is defined as the maximal number
of points a model in the family can shatter, i.e. for any labeling of the points the
model fits them perfectly, making no errors, and can be estimated for finite or
infinite hypothesis classes alike. More formally,

Definition 1.6 (VC-dimension) The VC-dimension of a hypothesis class C on an input
space X is given by

V C(C) = max{m|∀{xi ∈ X}mi=1, ∀yi ∈ {−1, 1}mi=1,∃f ∈ C s.t. f(xi) = yi ∀i}.

Using this complexity measure and considering the size of the training sample m, a
generalization bound can be derived as follows:

Theorem 1.1 (Uniform Convergence Bound) Given a training sample S of m instances
drawn i.i.d. from D and a hypothesis class C, the following holds true ∀δ ∈ (0, 1]
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and ∀f ∈ C with probability at least 1− δ

RD(f) ≤ R̂S(f) +

√√√√V C(C)
(
ln 2m
V C(C) + 1

)
+ ln4

δ

m
.

Intuitively, the more complex the model w.r.t. the amount of available data
(
V C(C)
m

)
,

the higher the risk of over-fitting the training sample and not generalizing well on
unseen instances. In particular for f the minimizer of R̂S and for a finite V C(C),
for the law of large numbers both RD(f) and R̂S converge with probability 1− δ
to the minimum of RD over C. Notice that similar but tighter bounds can be
formulated using other notions of capacity: the growth function [193], the flat
shattering dimension [1], the Rademacher complexity [97], and so on. However,
the bounds derived using such complexity measures all suffer from the same flaws.
As the capacity is estimated for the entire family of hypotheses (not only for the
optimum of the objective function) and the nature of the distribution D and the
quality of the sample S are ignored, the bounds derived using this framework are
known to be ‘worst-case‘ bounds, meaning that they are loose upper bounds of the
generalization gap RD − R̂S evaluated at the selected model.

To improve upon this, more recent frameworks allow to express generalization
bounds that are valid exclusively for the minimizer of the considered objective
function. As a matter of fact, the formulation of the problem directly impacts
the quality of the solution for both training and testing. The two frameworks
that we are about to present do not explicitly rely on a complexity term of the
chosen hypothesis class but depend on the algorithm deployed for learning the
model. A practitioner should make use of the setting that suits the problem the
best, considering for instance the regularization terms (e.g. Algorithmic Robustness
allows to deal with more complex ones and with l1 norms).

Uniform Stability We start by presenting the Uniform Stability framework,
proposed in [30], that we will utilize in Chapters 5 and 6.

The idea of Uniform Stability is to check if an algorithm produces similar solutions
from datasets that are slightly different. If that is the case, the algorithm is less
likely to over-fit the training sample and is probably able to generalize to unseen
examples from the same distribution. Let S be the original dataset and Si the set
obtained after having replaced the ith example zi of S by a new sample z′i drawn
from D. We will say that an algorithm is uniformly stable if the difference between
the loss suffered (on a new instance) by the hypothesis f learned by the algorithm
from S and the loss suffered by the hypothesis f i learned from Si converges in
O( 1

m). More formally,



1.2. Generalization guarantees 27

Definition 1.7 (Uniform Stability) A learning algorithm A has uniform stability of
2 βm w.r.t. the loss function ` with β ∈ R+ iff

sup
z∼D

∣∣∣`(f , z)− `(f i, z)
∣∣∣ ≤ 2 β

m
.

The uniform stability is directly implied if

∀z ∈ D,
∣∣∣`(f , z)− `(f\i, z)

∣∣∣ ≤ β

m

where f\i is the hypothesis learned on S\i, the set S without the ith instance zi,
which follows from the inequality

∣∣∣`(f i, z)− `(f , z)
∣∣∣ ≤ ∣∣∣`(f i, z)− `(f\i, z)∣∣∣ + ∣∣∣`(f\i, z)− `(f , z)

∣∣∣ ≤ 2 β
m

that uses the triangular inequality (at worse, altering a point is like removing a point
and adding another one). Using the McDiarmid’s concentration inequality [29], it
is possible to prove the following theorem:

Theorem 1.2 [30] Let A be an algorithm with uniform stability 2β
m w.r.t. a loss ` such

that 0 ≤ `(f , z) ≤ E, ∀z ∈ Z. Then, for any i.i.d. sample S of size m and for any
δ ∈ (0, 1], with probability 1− δ

RD(f) ≤ R̂S(f) +
2β
m

+
(
4β +E

)√ ln 1
δ

2m ,

where f is the solution found by A for the sample S.

The convergence of the bound depends on the constant β that accounts for the
specificities of the studied problem: the choice of loss function `, the regularization
terms and the hyper-parameters. More precisely, it is ultimately determined by the
size of the training sample m which should be at least O(β2).

Another well-known framework for studying the generalization guarantees of an
algorithm is the Algorithmic Robustness [209] that we use in Chapter 3.

Definition 1.8 (Algorithmic Robustness) An algorithm A is said to be (H, ε(.))-robust,
for a convex space Z, N ∈ N and ε : Zm → R iff Z can be partitioned into H
disjoint subsets denoted by {Ri}Hi=1, such that the following holds for all samples
S ∈ Zm:

∀z ∈ S,∀z′ ∈ Z,∀i = 1, ...,N
if z, z′ ∈ Ri then |`(f , z)− `(f , z′)| ≤ ε(S)

(1.1)

where f is the solution found by A for the sample S.
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In other words, instead of bounding the variation of the solution found for slightly
different samples, as in Uniform Stability, in this setting we check if the found
solution f has similar predictions on a point z of the training set and a testing
point z′ close to it in the sense of the partition (see Figure 1.6). Notice that the
quantity ε(S) depends on the sample. However, in most derivations, as concentration
inequalities are employed, a bound of ε(S) is estimated that accounts for the amount
of data m rather than the specificities of the sample.

Figure 1.6 – Given a partition over Z, two points are considered to be similar iff they lie
in the same region.

The following theorem gives the generalization bound based on the notion of
Algorithmic Robustness:

Theorem 1.3 [209] Given a loss function ` such that 0 ≤ `(f , z) ≤ E ∀z ∈ Z and
δ ∈ (0, 1], if an algorithm A is (H, ε(.))-robust, then with probability 1− δ:

RD(f) ≤ R̂S(f) + ε(S) +E

√
2Hln2 + 2ln(1

δ )

m

where f is the solution of A over S.

Continuity of the used functions Overall, all generalization bounds stand for
losses and hypotheses that enjoy some form of ‘continuity‘. We need to make sure
that the chosen functions return similar values when evaluated at similar points,
otherwise it is impossible to guarantee consistency in prediction even for samples
drawn from the same distribution.

Here we give two properties that we will check for our functions in the contribution-
chapters: the Lipschitz continuity of the hypothesis class and the σ-admissibility of
the loss function.

Definition 1.9 (Lipschitz continuity) A function f : X ⊂ Rd → R, with X a convex
space, is said to be c-Lipschitz w.r.t. a norm ‖.‖ if ∃ c ∈ R, c > 0 that ∀x1,x2 ∈ X :
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|f(x1)− f(x2)| ≤ c ‖x1 − x2‖ .

Roughly speaking, a function that is Lipschitz continuous varies slightly within a
certain interval.

Considering the σ-admissibility property, given a point, the difference between a
loss function evaluated for any two possible hypotheses should be bounded by the
difference of hypotheses’ predictions, scaled by a constant:

Definition 1.10 (σ-admissibility) A loss function `(f , z) is σ-admissible w.r.t. f if it
is convex w.r.t. its first argument and ∀f1, f2 and if ∀z ∈ Z:

|`(f1, z)− `(f2, z)| ≤ σ ‖f1(x)− f2(x)‖ .

Further thoughts As highlighted throughout this section, the existing theoretical
frameworks allow to derive generalization bounds for most of the known learning
algorithms. However, they are all independent of the data distribution and the
sample at hand, because they all suppose that (i) with enough i.i.d. data instances
(tending to infinity) the training sample tends to the real distribution and that (ii)
the complexity of the task does not influence the gap between the true and the
empirical risk. They fail to describe the behavior of an algorithm when the amount
of data is finite, which is the most interesting scenario as it corresponds to the reality.
Because of the mentioned flaws, the described theoretical frameworks might lack of
significance for certain classes of hypotheses and certain algorithms. For instance,
complexity-based settings fail to prove the evident generalization capabilities of Deep
Neural Networks [223], giving bounds way too loose to be meaningful. For those
models that have almost infinite capacity, recent works [160, 170] suggest that the
generalization gap is bounded by the complexity of the task rather than the actual
capacity of the model, understood as the potential of fitting any distribution. This
hypothesis may find confirmation in the work [170], which highlights a compression-
phase in the training of common DNNs.

1.2.2 Adversarial Robustness

Empirically, it is possible to study the generalization properties of a model by
inspecting its sensitivity to adversarial examples at testing. Adversarial examples
are inputs slightly different from real ones that are maliciously crafted to make a
model have a wrong prediction (often, misclassification). Usually, a carefully crafted
small perturbation, computed through various techniques [38, 77, 139], is added to
the original input (see Figure 1.7).
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Figure 1.7 – A clean image of a panda from Imagenet dataset [53] receives adversarial
noise. The obtained adversarial image still looks like a panda to the human eye, but will
make the model changes its prediction to a relatively confident ‘capuchin‘ label.

The applied perturbations are, in general, constrained to lie in a p-norm ball with
fixed radius as follows:

min
‖∆x‖≤r

f(x+ ∆x) 6= f(x).

As such, the perturbed instances are only slightly different from the original ones
(making them hard to detect) and should be classified consistently by the model.
Yet, it has been shown that all machine learning methods, although at different
scale, are affected by adversarial examples, even those with strong generalization
guarantees [23]. If the existence of such test inputs raises security concerns about
the deployment of machine learning in real systems, it also stresses the need of
a thorougher understanding of artificial learning mechanisms and their actual
generalization capabilities.

Figure 1.8 – Illustration of fictitious data distribution and model decision boundary. The
colors correspond to the classes and the training instances are marked by crosses. The
red line is the decision boundary of the model. Adversarial examples (marked by circles)
occur in the regions where the model’s decision function and the true distribution of the
data do not agree or in regions outside the class manifolds. A possible attacker would try
to modify an example so that it lies on the wrong side of the decision boundary.

As the cause of this phenomenon is still quite obscure, current researches are focused
on making models generalize to adversarial examples by making them robust to
these malicious perturbations. This body of work is known under the name of
Adversarial Robustness.

There exist several metrics for assessing the robustness of a model under several
settings (types of attack). The empirical robustness [139] corresponds to the
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average minimal perturbation that the attacker must introduce to elude the model.
The loss sensitivity [101] measures the average loss gradient evaluated on clean
examples. Finally, the Cross Lipschitz Extreme Value for nEtwork Robustness
metric (CLEVER) [205] estimates a lower bound for the minimal perturbations,
based on the extreme value theory. Ideally, a model should yield high values on all
these metrics.

Moreover, different techniques, usually called defenses because of their security
implications, have been proposed to increase the robustness of a model, such as
adversarial training [179], data augmentation in general [136, 222] and robust
optimization [128], which train the model to correctly classify also perturbed
examples, and architecture modifications [210, 222], which contain the cumulative
amplification of errors. However, robustness comes with a worrying price: it has been
observed [187] that the models with increased robustness lose on accuracy probably
because the defenses act as regularization, making models equally insensitive to all
perturbations, ultimately losing their discriminatory capabilities.

1.3 Conclusion

In this chapter, we overviewed the field of Statistical learning, with a particular focus
on the Supervised setting. We introduced all significant elements and principles that
enable learning, along with the tools for assessing generalization. In particular, we
introduced the family of linear models, to which the next chapter is dedicated. We
will show how linear models can be empowered using different techniques, without
losing their scalability properties. Among such techniques, we will describe local
learning approaches, that exploit the local characteristics of the space to improve
the expressiveness of the learned model. Specifically, we will give an overview of this
setting by presenting its main idea, its challenges and implications before presenting
our four contributions that are based on it.
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Empowering Linear Models

In the previous chapter, we have briefly discussed of the tie between data distribution
and model expressiveness. Data characteristics usually vary over the space: the
overall distribution might be multi-modal and contain non-linearities. The learning
algorithm should be able to capture and adapt to these changes in order to have
good performance. Even though linear models fail to describe complex distributions,
they are renowned for their scalability, at training and at testing, to datasets big
in terms of number of examples and of number of features. Several methods have
been proposed to take advantage of the scalability and the simplicity of linear
hypotheses to build models with great discriminatory capabilities. These methods
empower linear models, in the sense that they enhance their expressive power
through different techniques. One of the main advantages of such approaches is
that they avoid the hard task of selecting a model appropriate for the task.

In this chapter, we present the three main approaches of this line of work. Such
approaches either embed the data in a new representation space or train and combine
several models on the original space. We do not include a complete review of the
literature, which is reported in the other chapters. Instead, we provide an overview
of the notions, ideas and main solutions of this class of approaches.

We start by describing Boosting, a meta-algorithm for learning strong models using
weak ones. It trains a set of hypotheses, on modified distributions of the training set
to ensure their diversity, and combines their predictions, with a weighted majority
vote, for better performance. Boosting methods are widely deployed for their ease
of application, performance and theoretical foundation.

The second family that we are going to present is the family of kernel methods, that
learn linear models on latent spaces induced by a selected kernel function. In such
spaces, the inner product between vectors is given by the chosen kernel function.
Consequently, the latent space and its mapping are not needed to be explicitly
defined. We will see that models can be trained using the matrix of kernel evaluations
for all pairs of points of the training set, called the Gram matrix. Kernel methods
are known for their theoretical foundation and their superb expressive power. Yet,
their applicability is sometimes limited by their computational and storage burdens.
There exist several solutions for scaling kernel methods to big datasets. Most of
them propose approximations of the Gram matrix (whose manipulation is often a

33
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bottleneck), in order to reduce the costs for inverting it and to limit the number of
kernel evaluations.

Lastly, we describe the locally-linear learning family, to which the contributions
of this manuscript belong. Local learning techniques focus on capturing the local
characteristics of the space to build expressive models. The problem is linearized
following the local consistency principle, by which predictions should be consistent
for close points. We introduce the two principal solutions for obtaining linear
approximations of the problem. We either partition the data and learn a linear
model per subset of data or construct a latent space through comparisons between
the instances of the dataset and a set of previously selected points, spread over the
input space. We will show that local learning approaches have better scalability
than kernel methods.

The chapter is organized as follows: in Section 2.1, we present the Boosting meta-
learning algorithm and, in particular, AdaBoost; in Section 2.2, we describe the
general principles of kernel methods, with their theoretical analysis, and we present
the Support Vector Machines method; we additionally give a quick overview of the
state of the art techniques for approximating kernel matrices; finally, in Section 2.3,
we present locally-linear learning techniques, highlighting their advantages and
limitations.

2.1 Boosting methods

Boosting methods are widely-employed supervised learning techniques that belong
to the ensemble methods family. The characteristic trait of ensemble methods is
that they cope with complex data distributions by constructing a set of n models
H = {hj : X → R}nj=1 and combining their predictions. The idea is that the final
model should be more accurate than the individual models of the ensemble. It has
been proved that, in order to build an effective ensemble of models H, (i) each
model hj must be more accurate than a random guessing and (ii) the models must
be diverse in their predictions. A strong model can, then, be built from weak, or
base, hypotheses.

Definition 2.1 (Weak Hypothesis) A weak hypothesis on a sample S is any hypothesis
trained on S that scores an error slightly smaller than a random guessing.

In the case of binary classification, a weak model should have a classification error
ε̂S < 0.5. Linear models can be utilized as base functions. In the contributions
of Chapter 4, we will employ decision stumps, which make predictions based on a
threshold value for single features.
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Unlike heterogeneous ensemble methods [59], boosting approaches generate the
set of models from a single learning algorithm but, to foster diversity, train them
on training samples {Sj}nj=1, which are modified versions of the original sample
S and vary from hypothesis to hypothesis. For instance, AdaBoost [67, 68], the
arguably most known boosting technique, iteratively re-samples the training set by
re-weighting the examples, depending on the predictions of the weak hypotheses
learned so far. For a classification task, at iteration j + 1, the weight of any
(xi, yi) ∈ S is evaluated as follows:

w
(j+1)
i = w

(j)
i

exp(−αjyihj(xi))
Z(j+1)

with hj representing the hypothesis learned on Sj of sample weights w(j), w(0)
i = 1

m

and Z(j+1) ∈ R+ a normalization constant so that ∑iw
(j+1)
i = 1. αj ∈ R+ is a

quality weight affected to the learned weak hypothesis hj which depends on the
classification error ε̂Sj :

αj =
1
2 log

1− ε̂Sj
ε̂Sj

and ε̂Sj =
m∑
i=1

I[yi 6= hj(xi)].

Finally, the weighted vote sign(F (.)) = sign
(∑n

j=1 αjhj(.)
)

is used as the predic-
tion rule.

It has been shown [46] that AdaBoost corresponds to fixing the set of base functions
H a priori and optimizing the exponential loss, or, equivalently [168], for the strictly
increasing monotonicity of the log function:

arg min
α

log
(
m∑
i=1

exp (−(Aα)i)
)

(2.1)

with A ∈ Rm×n the matrix whose entry aij = yihj(xi) gives the margin achieved
by the classifier hj on (xi, yi). Thus, the sample weight vector w can be rewritten
as

w =
exp(−Aα)∑m
i=1 exp(−Aα)i

.

Many theoretical analyses prove the efficacy of AdaBoost in minimizing the training
error on the original sample S [68] and its generalization capabilities [68, 162]. As
a matter of fact, even if this meta-algorithm is in contradiction with the Occam’s
razor principle, it still generalizes well because it maximizes the margins of the
training examples [162].

Nowadays, the boosting learning process is usually carried out in its Gradient
Boosting formulation [70, 130], which was derived after observing that boosting
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corresponds to a gradient descent optimization of a particular regression problem.
From this standpoint, the learning process is interpreted as a functional gradient
descent which fits a hypothesis on the residuals {yi−F (xi)}mi=1 (i.e. minimizing the
squared loss (y− F (x))2) in order to improve the current prediction rule sign(F (.)).
The success of gradient boosting is due to the fact that it can extend boosting
techniques to any regression loss. By working with the absolute loss |y− F (x)|, for
instance, it is possible to reduce the sensitivity of the algorithm to outliers.

2.2 Kernel methods

This second family of methods allows to capture complex distributions by using a
representation of the data, of a potentially infinite dimensionality, that simplifies
the task by making it solvable by a linear model. However, this new representation
is not explicitly defined or optimized. On the contrary, such methods make use
of a kernel function, fixed before learning. The chosen kernel function allows to
directly compute the dot product between vectors on the implicit latent space using
the original inputs, without mapping them on this new space. This substitution of
the computation of the dot product on the latent space with its evaluation on the
original space through the kernel is called kernel trick. As a matter of fact, even for
a finite dimensional space, computing the kernel is often cheaper than expressing
the mapping between the input space and the latent space and applying it to the
input data.

As we will elucidate, kernel methods restrain the set of feasible solutions of their
optimization problem to a space defined by the chosen kernel. The advantage is
that on this space, the estimation methods are linear. Nevertheless, the choice of
kernel function is critical for the quality of the final model. In the following, we
briefly report the theoretical foundation of kernel methods, by formally presenting
the notions necessary to their understanding and showing how the solutions of
their optimization problems can be formulated in terms of evaluations of the kernel
function on the training examples.

2.2.1 Theoretical Foundation

The latent space, on which the problem is solved, is determined by a pair-wise
function k which needs to satisfy certain conditions. We restrict the following
presentation of kernel methods to Mercer’s kernel functions, whose definition is
reported right away. However, generic kernel functions can take values in the
complex space. In the remainder of this manuscript, we will refer to Mercer’s kernel
functions simply as kernels or kernel functions.



2.2. Kernel methods 37

Definition 2.2 (Mercer’s Kernel) A kernel function is any pairwise real-valued function
k : X 2 → R which satisfies the following conditions ∀ (x1,x2) ∈ X 2:

1. (symmetry) k(x1,x2) = k(x2,x1);

2. (positive semi-definiteness) ∀ m ∈N and ∀ {αi ∈ R}mi=1:
m∑
i=1

m∑
j=1

αiαjk(x1,x2) ≥ 0.

Examples of kernel functions are the Linear kernel and the Radial Basis Function,
a.k.a. Squared Exponential Kernel. There exist several variations of their formula-
tions, notably with or without certain scaling and centering factors. We present the
formulations that we will utilize in the remainder of this manuscript.

Example 2.1 (Linear kernel) ∀ (x1,x2) ∈ X 2:

k(x1,x2) = 〈x1,x2〉.

Example 2.2 (Radial Basis Function RBF) Given γ ∈ R+, ∀ (x1,x2) ∈ X 2:

k(x1,x2) = exp
(
−‖x1 − x2‖22

γ

)
.

γ is a radius determining the decay of the kernel and its value is usually fixed
depending on the task. One key difference between the two previous functions is
that the RBF is a stationary kernel, because it depends on the distance between
points no matter their absolute positions in the input space. This is not the case
for the Linear kernel.
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Figure 2.1 – Illustration of kernel functions evaluated in a 2D space on a fixed point
(marked by a dot) and its surrounding points. On the left, the linear kernel induces straight
contour lines and its value is unbounded. On the right, the RBF kernel (for γ = 2) returns
its maximal value (1) at the center and has a typical exponential decay as the square
distance to the center increases.

The two conditions in Def. 2.2 are necessary for the validity of Theorem 2.2 that we
report in the following. On one hand, they ensure the convexity of the optimization
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problem and, on the other, the applicability of the so-called kernel trick. They
imply the existence of a Hilbert space of potentially infinite dimensionality where
the inner product between a pair of projected data points is expressed by the chosen
kernel.

Theorem 2.1 (Mercer’s theorem) Any Mercer’s kernel k : X 2 → R is an inner product
on a space H for which there exists a mapping µ : X → H such that:

k(x1,x2) = 〈µ(x1),µ(x2)〉H.

In general, kernel methods take advantage of the new representation space H
without explicitly expressing the mapping µ. Indeed, common problems can be
formulated so that only the inner products between pair of vectors in H are needed,
which can be evaluated directly using k(.).

Here we briefly report the theoretical foundations of kernel methods. In particular,
we show how the minimizer of the optimization problem is searched over the
Reproducing Kernel Hilbert Space Hk [5].

Definition 2.3 (Reproducing Kernel Hilbert Space RKHS) Given a set X , an Hilbert
Space Hk = {f : X → R} of real-valued functions on X is a Reproducing Kernel
Hilbert Space iff ∃ k such that k(x, .) ∈ Hk and

f(x) =
∞∑
i=1

βik(x,xi)

with {βi ∈ R}∞i=1.

k is called the reproducing kernel of Hk and is unique (and vice versa) [165]. Kernel
methods restrain the family of hypotheses to the RKHS Hk corresponding to the
chosen kernel. Notice that any function in the RKHS can be expressed by an infinite
amount of data from X which makes the formulation in 2.3 intractable. The following
theorem [163] shows how the solution of common optimization problems, which
minimize the empirical risk regularized with particular regularizations, depends
only on the points of the finite training sample.

Theorem 2.2 (Representer Theorem) Given a non-empty input set X and an output
set Y, a Mercer’s kernel k : X 2 → R with RKHS Hk and a training sample
S = {(xi, yi) ∈ X ×Y}mi=1, it can be shown that for any f∗ ∈ Hk minimizing the
regularized empirical risk

f∗ = arg min R̂S(f) + g(‖f‖Hk)

with g : R+ → R any monotonically increasing function, ∃{αi ∈ R}mi=1 so that f∗

can be written as
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f∗(x) =
m∑
i=1

αik(x,xi).

Thus, the solution can be expressed using the training sample and a vector of
weights α = [. . . ,αi, . . . ] ∈ Rm, each affected to a training instance. The main
consequence is that the optimization problem of kernel methods can be reduced to
finding the optimal values of the coefficients of α. The problem is, then, linear.

We now give an example of kernel method and show how the vector α can be
optimized using the matrix of kernel evaluations Kij = k(xi,xj) for all pairs of
training points xi ∈ S, xj ∈ S. This matrix is often referred to as the Gram matrix
of the sample S and is symmetric and positive semi-definite as a direct implication
of the Mercer’s conditions.

2.2.2 Support Vector Machines

There exist several works exploiting the theory of RKHS. Examples of kernel
methods are Gaussian Processes [158], kernel-PCA [164] and RBF network [34].
Among them, Support Vector Machines [28, 49] (SVMs) are well-known for their
good performance and theoretical foundation. Here, we present the formulation of
SVMs for the case of binary classification, that we will utilize as the basis of two
of our contributions and as baseline. However, this technique can be applied to
regression and multi-class problems. An interested reader should refer to [165] for a
thorougher overview.

SVMs learn linear models that minimize the empirical risk and maximize the
margins of the training sample on the representation space (the original input space
X or the latent space H). The idea is that the best separator is the one maximizing
the gap between the two classes, i.e. the largest distance with the closest training
instances of both classes. As a matter of fact, such a separator should have the
best generalization error, as the test instances are more likely to be on the right
side of the boundary. The problem can equivalently be formulated as learning
two parallel hyperplanes separating the two classes (θTµ(x) + b = 1 for class 1
and θTµ(x) + b = −1 for class −1), with the largest distance between them. This
distance is, then, given by 2

‖θ‖ . Ideally, all points should lie outside the margin
created by the two hyperplanes. This not necessarily the case: the data might not
be linearly separable in the representation space. This “hard-margin” constraint is
relaxed by using a hinge loss on the margin of the examples:

max(0, 1− y(θTµ(x) + b)).
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The soft-margin SVM optimization problem is formulated as follows:

arg min
θ,b

1
2 ‖θ‖

2
2 + c

m∑
i=1

max(0, 1− yi(θTµ(xi) + b)) (2.2)

where c ∈ R is the hyper-parameter controlling the trade-off between margin
maximization and empirical risk minimization.

Notice that 2.2 belongs to the set of problems for which Theorem 2.2 holds. In this
case, g(‖f‖Hk) =

1
2c ‖θ‖

2
2).

Equivalently, the previous problem is expressed using additional slack variables
{ξi ∈ R+}mi=1, quantifying the error committed by the separator on each training
instance (if the margin constraint is satisfied, ξi = 0):

arg min
θ,b,ξ

1
2 ‖θ‖

2
2 + c

m∑
i=1

ξi

s.t. yi(θ
Tµ(xi) + b) ≥ 1− ξi ∀i = 1..m (2.3)

ξi ≥ 0 ∀i = 1..m

By solving the previous problem in its dual form, it will become evident how it can
be solved without explicitly finding the mapping µ : X → H and how its solution
follows the representer theorem 2.2. The Lagrangian dual problem maximizes the
corresponding Lagrangian objective function w.r.t. its Lagrangian multipliers, whose
components are equal to 0 when the associated constraints are satisfied and take
positive values when they are not. The Lagrangian objective function is expressed
as follows:

L(θ, b, ξ,α, r) =1
2 ‖θ‖

2
2 + c

m∑
i=1

ξi −
m∑
i=1

αi(yi(θ
Tµ(xi) + b) + ξi − 1)−

m∑
i=1

riξi

(2.4)

where ∀i = 1..m, αi ∈ R+ and ri ∈ R+.

By setting the gradient of L w.r.t. θ, b and ξ to 0, we find the saddle point
corresponding to the function minimum and respecting the constraints:

∇θL(θ, b, ξ,α, r) = θ−
m∑
i=1

αiyiµ(xi)

∇bL(θ, b, ξ,α, r) = −
m∑
i=1

αiyi

∇ξiL(θ, b, ξ,α, r) = c− αi − ri
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which give

θ =
m∑
i=1

yiαiµ(xi) (2.5)

m∑
i=1

yiαi = 0 (2.6)

αi ≤ c (2.7)

The dual problem takes the form of a Quadratic Programming problem that can be
solved by common optimization techniques. It can be derived by replacing θ by its
expression (2.5) and by simplifying with the use of expressions (2.6) and (2.7):

max
α
−1

2

m∑
i=1

m∑
j=1

yiyjαiαjk(xi,xj) +
m∑
i=1

αi

s.t. 0 ≤ αi ≤ c ∀i = 1..m
m∑
i=1

αiyi = 0 ∀i = 1..m

which is concave w.r.t. α and is independent of the explicit mapping µ(.).

The optimal values of the dual and primal problems are tied due to the following
dependency:

max
α,r min

θ,b,ξ
L(θ, b, ξ,α, r) ≤ min

θ,b,ξ
max
α,r L(θ, b, ξ,α, r)

where the left term corresponds to the optimal value of the dual problem and the
right one to the primal. The dual and the primal problems take exactly the same
solution at optimality if the Karush-Kuhn-Tucker (KKT) conditions are not violated
(see [32]). In the case of SVMs, two additional constraints need to be considered in
order to satisfy the KKT conditions:

αi
(
yi(θ

Tµ(xi) + b)− 1 + ξi
)
= 0 ∀ i = 1..m

riξi = 0 ∀ i = 1..m.

Once the Lagrangian dual problem is solved, the characteristic vector θ and the
offset b of the optimal margin hyperplane are expressed as follows:

θ =
m∑
i=1

αiyiµ(xi)

b = θµ(xj)− yj with j = arg max
i

αi.

Notice that the solution follows the representer Theorem 2.2. Moreover it depends
only on those training instances whose Lagrangian multipliers are non-zero. Such
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Figure 2.2 – Possible selected decision hyperplanes and support vectors on a toy problem.
The points are represented in the space H and the colors indicate the two classes. The
support vectors (marked by red circles) are all points violating the margin constraint,
notably those that are misclassified (they lie on the wrong side of the hyperplane) and
those lying within the margin.

particular training points are called support vectors, from which the method takes
its name. Figure 2.2 shows which points could be selected as support vectors in the
given non-linearly-separable toy problem.

Finally, the new instances can be classified as

f(x) = sign (〈θ,µ(x)〉+ b) = sign
(
m∑
i=1

(αiyik(xi,x)) + b

)
.

Notice that we reported SVMs’ formulation directly for solving the problem on the
projected space H. However, the problem can be solved on X without mapping
the data (i.e. µ(x) = x). In the rest of this manuscript, we will refer to this vanilla
formulation as linear SVMs and, whenever the kernel trick is applied, we will use
the kernel SVMs designation.

2.2.3 Kernel Approximations

Despite their strong theoretical foundation and effectiveness, kernel methods are
known for their lack of scalability to datasets large in number of points (bigger
than ca. 10000 instances). From a computational point of view, at training time
m2 evaluations of the kernel need to be carried out to construct the Gram matrix,
which needs to be inverted for solving the QP dual problem; at test time, the
computational complexity depends on the number of non-zero coefficients of α
which are up to m (O(m) for SVMs [174]). From a memory standpoint, the m2
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entries of the Gram Matrix needs to be stored, along with the training instances
whose α coefficients are non-zero.

We present, here, the two principal solutions of the literature for scaling kernel
methods. They involve low-rank approximations of the Gram matrix, which alleviate
the storage and computational burdens at training. Both solutions come with
theoretical guarantees on the quality of the approximation and, consequently, the
learned model. Notice that the costs for approximating the Gram matrix are not
negligible and that, of course, the quality of the approximations depends on the
rank of the sketch matrix (higher the rank, better the approximation but higher
the complexity of the algorithm and the costs for computing the approximation).

Approximation with Random Fourier features [157] finds a sketch matrix C ∈ R2pm,
such that K ≈ CCT , by using a basis set of functions {ωj ∈ Rd}pj=1 drawn
i.i.d. from the probability measure induced by the kernel p(ω). According to
Bochner’s theorem [125], any point x ∈ X admits a Fourier features’ representation
z(x) = 1√

p [cos(ωT1 x), . . . , cos(ωTp x), sin(ωT1 x), . . . , sin(ωTp x)]. This method can be
applied only to stationary kernels, in its original formulation, and to dot kernels, of
the kind k(x1,x2) = g(〈x1,x2〉), in its extensions.

Nyström method [56] can be used to approximate any PSD matrix. It constructs a
matrix C ∈ Rpm by sampling p columns from the Gram matrix, so thatK ≈ CO†CT ,
with O† the Moore-Penrose pseudo-inverse of the overlap matrix O ∈ Rp2 between
C and CT in K. Thus, the computational complexity for training the model is
sub-quadratic. However, it is unchanged at test times.

2.3 Local Learning

Local learning approaches offer ways to optimize simple models and still capture
complex distributions. As already mentioned in this dissertation, they are effective
for datasets that present multi-modalities and/or non-linearities because they are
able to capture the local characteristics of the space. They are also computationally
efficient as they learn only linear classifiers (for which efficient solvers exist).

Local learning methods are based on the local consistency principle: similar points
in the feature space should be similar in the output space. This local consistency is
typically pursued through two different approaches: one option is to partition the
data and learn a model per subset of data; the other option is to extract the local
specificities of the space by comparing the instances to a set of points spread over
the space. In the following, we thoroughly describe the two approaches.



44 Chapter 2. Empowering Linear Models

2.3.1 Local Learning by Data Partitioning

The most classical locally-linear learning family of approaches employs a partitioning
of the dataset into subgroups of data and optimize a linear model per subgroup,
thereby exclusively exploiting the instances of that group (as shown in Figure 2.3).
Such methods embrace the Divide and Conquer principle: with a sufficient amount of
subgroups, the set of models has the expressive power to capture the non-linearities
and multi-modalities of the space even when optimizing linear models. Indeed, each
of the models adapts to a particular subset of data, by capturing its peculiarities. As
a consequence, the individual models have good performance only on the subgroup
they are learned from. The decision for an instance must be taken depending on
the subgroup it belongs to which means that the final model is stationary on each
subset individually but not globally.

Figure 2.3 – Example of local and linear classifiers learned on a clustered input space.
The points of the toy dataset are represented by circles, with their colors based on their
class. The boundaries between regions are drawn as solid lines and the decision boundaries
as dashed lines. When the models are learned independently from each other, as in this
example, the overall predictions might not be smooth and the models might over-fit the
training sample and lack sufficient information for learning.

A sample can be partitioned following different criteria, based on reasonable ob-
servations or prior knowledge about the dataset. For instance, a model could be
learned per category of objects in a classification setting, or per task in a multi-task
setting (see [39] for an introduction). The splitting could be also carried out using
meta-information, such as the id of the user who generated the data, when working
with personal data as done in Chapter 4. Arguably the most deployed criterion
for splitting the data is the spatial one (as in the contributions of Chapter 3): the
instances are grouped based on similarities between feature values, and regions
are defined on the input space. Usually, standard clustering techniques, such as
K-means, are employed for spatially splitting the input space. Furthermore, the
partition can be refined while optimizing the predictive models, as done in [198].

Even though this kind of approaches adapts well to the data distribution, it can
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present several problems. Firstly, they tend to over-fit, simply because the more the
number of models, the less the training data they learn from. Secondly, the overall
smoothness in prediction is generally lost, due to decision discrepancies at the
boundaries between subsets. Lastly, local models can suffer from other task-specific
drawbacks, such as the limitation of comparing points only from the same subset,
which can be problematic when learning metrics, as underlined in Chapter 3.

Regularized Locally-Linear Learning A classical solution for overcoming the
aforementioned drawbacks is learning a global model jointly with the local models,
as done in [41, 80, 156]. By coupling a global with a local model at training and
testing, on one hand, an implicit regularization is applied on each local model, by
accounting for information coming from outside its subgroup, and, on the other
hand, the predictions are smoother over-all the data distribution.

Let us consider, for instance, the optimization problem1 of Clustered SVMs [80]:

arg min
θ,{θk}Kk=1

λ

2 ‖θ‖
2
2 +

1
2

K∑
k=1
‖θk − θ‖2 + c

K∑
k=1

m∑
i=1

ξi I[xi ∈ Rk]

s.t. yiθ
T
k [xi, 1] ≥ 1− ξi ∀k = 1..K and ∀xi ∈ Rk (2.8)

ξi ≥ 0 ∀i = 1..m

with λ ∈ R+ and c ∈ R+ two hyper-parameters.

After having clustered the dataset using K-means, a set of local linear SVMs is
jointly optimized with an additional hierarchical regularization constraint: the
second term penalizes large differences between an optimized global hyperplane
θ ∈ Rd+1 and the local ones {θk ∈ Rd+1}Kk=1. Doing so, the information is bridged
between clusters of instances. Notice that, by not optimizing θ and fixing it to
0, the optimization problem (2.8) reduces to learning K independent local SVMs.
This approach has proved to be efficient and has good performance. Moreover,
it is theoretically founded as it comes with a generalization bound based on the
Rademacher complexity. However, forcing all the local models to be equally close to
the same vector, with no regard of the commonalties or differences between clusters,
can compromise the performance of the local models and cause some undesired
behaviors, as shown in the experiments of Chapters 3, 4 and 5.

We argue that softer regularizations lead to better performance. For instance,
instead of learning a global model, one could learn combinations of the local ones,
based on the topological characteristics of the input space and/or the similarities

1The hyperplane offsets are implicit in this formulation
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between pairs of subsets. We will discuss further about more effective regularizations
in Chapter 3.

2.3.2 Landmark-based Local Learning

Instead of partitioning the data and learning a model per subset of instances, one
could optimize a single model capable of extracting the local characteristics and
evolving smoothly over the distribution. This can be achieved following, for instance,
the similarity principle of kernel methods and metric learning (see Chapter 3 for an
introduction): the instances of the dataset are described by comparing them to a
set of selected instances, drawn from the true distribution of data or not. In this
manuscript, we will refer to such selected points as landmarks, but, in the literature,
they are also referred to as anchor points.

Definition 2.4 (Landmarks) The set of landmarks L is a set of points {lp ∈ X}Lp=1
called real iff ∀lp ∈ L, lp ∼ D or virtual iff they are not drawn from the distribution
D.

Examples of virtual landmarks could be the centroids of regions found through a
clustering technique [107] or the principal components computed through PCA [220].

In general, no supervision is provided for the set of landmarks (even when available in
the case of real landmarks): their purpose is to produce a representation independent
from their labels. Such a representation is built through point-landmark comparisons:
the more similar an instance is to a landmark, the more influential that landmark
will be in the decision for that instance (as shown in Figure 2.4).

Also this family of approaches takes advantage of the efficiency of linear models. As
a matter of fact, the point-landmark comparisons allow for defining a mapping from
the original space X to a latent space H in which the problem is supposed to be
linear. The difference with data partitioning solutions is that the global stationarity
is maintained, i.e. the representation of an instance is independent of the subset
of data it belongs to. Doing so, the predictions are naturally smooth without the
help of regularization constraints. Moreover, the instances are not assigned to a
particular local model, unlike with a hard partition, and the predictions can benefit
from the information coming from the entire dataset.

In contrast with pure kernel methods, the number of pair-wise comparisons are
limited before training the model, because they are performed exclusively between
points and landmarks and not between all pairs of training points (Lm comparisons
instead of m2). Furthermore, the predictions are also based on limited comparisons
(O(L) instead of O(m)). These restrictions imply a better scalability of the ap-
proaches w.r.t. the size of the dataset, both at training and test time. Moreover,
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Figure 2.4 – Illustration of the influence of the selected landmarks in the decisions. The
points are represented in the original space X and the colors indicate the two classes. The
landmarks are marked by red circles, whose sizes depend on the similarity with the given
point. Each point in the dataset is compared exclusively to the landmarks and its new
representation depends on its degree of similarity with each of them.

they allow for deriving an explicit formulation of the latent space and its mapping,
making the study and the interpretation of the learned models easier.

The performance of the landmark-based methods strongly depends on the methods
for estimating the relationships between instances and landmarks. We describe,
here, the two principal approaches for modeling these relationships.

Local Coordinate Coding Several techniques [107, 199, 213] make use of Local
Coordinate Coding (LCC) for modeling the data. A set of landmarks defines a local
coordinate system, such that each instance of the dataset can be approximately
represented by a linear combination of the landmarks, as follows:

∀xi ∈ X , LCC(xi) =
L∑
p=1

Ciplp with
L∑
p=1

Cip = 1.

The coding is called local because, through different techniques, each instance is
expressed using a limited number of landmarks so that the learning is efficient.
Generally, a model is, then, optimized per landmark using the training sample
encoded with the given LCC. For instance, L linear SVMs can be optimized as
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arg min
{θp,bp}Lp=1

1
2

L∑
p=1
‖θp‖22 + c

m∑
i=1

ξi

s.t. yi
L∑
p=1

θTp Ciplp + bp ≥ 1− ξi ∀i = 1..m (2.9)

ξi ≥ 0 ∀i = 1..m.

The encoding weights are usually computed considering the point-landmark relation-
ships, such as their Euclidean distance or their geodesic distance [190, 199, 228], and
their sparsity can be enforced by only considering the neighboring landmarks [107].
However, techniques that learn them jointly with the models [64, 194, 213] have
proved to be more effective, even though they create the problem of how estimating
the LCC for test points.

(ε, γ, τ )−good similarities The point-landmark relationships can be assessed
also by means of kernel functions. The resulting explicit mapping from the original
space X to the latent space H takes the following form, for a given kernel k:

µL(.) = [k(., l1), . . . , k(., lL)].

This mapping is computationally cheaper than the previously described ones (both
fixed and optimized coding), but still capable of capturing complex distributions.
Moreover, it is straightforward to model test points.

A final advantage of this coding scheme is that it comes with theoretical guaran-
tees. The authors of [9, 10] introduced the (ε, γ, τ )−good similarities theoretical
framework for studying the ties between the chosen projection and the quality of
the linearization of the problem. The “goodness” of the mapping depends on an
unknown set of labeled reasonable points P , whose proportion in the underlying
distribution D equals τ . The idea is to check that, according to the chosen kernel,
a proportion 1− ε of points is in expectation more similar to the reasonable points
of the same class than to those of the opposite one. A kernel function (potentially
non-PSD) is then said to be (ε, γ, τ )−good if it achieves an expected margin of at
least γ

E(x′,y′)∈P (yy
′k(x,x′)) ≥ γ

with 1− ε probability mass of examples drawn from D.

The following theorem guarantees the existence of a linear classifier with true risk
arbitrary close to ε when a sufficient amount of landmarks is sampled.

Theorem 2.3 ([9]) Let k be a (ε, γ, τ )−good kernel on a distribution D and L be a
set of L = 2

τ

(
log(2/δ) + 8 log(2/δ)

γ2

)
real landmarks, with δ ∈ (0, 1]. Then, with
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probability 1− δ, the embedded data {µL(x)|x ∈ D} admits a linear separator with
a margin of at least γ

2 and an error of at most ε+ δ.

Notice that such theoretical results are derived for the 0/1 loss. Extensions of this
theory are available, in particular, for the hinge loss [9].

Selecting Landmarks Like in partition-based approaches, two fundamental
questions arise when working with a set of landmarks: how many landmarks are
sufficient for capturing the variations of the data distribution and how should they
be selected. According to [213], the cardinality of L should at least be equal to the
dimensionality of the intrinsic manifold on which the data distribution lies, which is
often much smaller than the dimensionality of X . However, it is generally difficult
to estimate this intrinsic dimensionality of the data manifold. The theoretical
results of [9] (Theorem 2.3) impose that the number of landmarks should be at least
L = 2

τ

(
log(2/δ) + 8 log(2/δ)

γ2

)
to get, with probability of 1− δ, a representation on

which a linear model has good performance. However, this estimation also depends
on the unknown intrinsic complexity of the problem (given here by the constant τ).
Moreover, Theorem 2.3 has validity only for real landmarks (points drawn from the
input distribution) and not for virtual ones.

2.4 Conclusion

In this chapter, we gave an overview of the main approaches for empowering linear
models. Firstly, we described how weak hypotheses can be boosted to form a
strong model and highlighted the conditions on the weak hypotheses for obtaining
guaranteed generalization. Secondly, we presented the principles and theoretical
foundation of kernel methods, and described the widely-deployed SVMs algorithm
for learning large-margin linear classifiers. Lastly, we introduced the local learning
family of algorithms and discussed how the locality principle can be applied through
data partitioning or landmark-based coding.

The contributions of this manuscript consist of new local learning approaches
which address the pitfalls of the aforementioned techniques. We chose to work
with this family of algorithms because of their intuitive principles, their natural
scalability (unlike kernel methods) and their ease of application (the hypotheses
are not necessarily weak, unlike in boosting techniques). Moreover, they can be
combined with other learning frameworks. As an example, in Chapter 4, we show
how local learning and boosting can be coupled to learn local models on personal
data.

We focus our works on both families of local learning approaches described in this
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chapter. Part II is devoted to local learning by data partitioning and studies the
effects of learning with smoothing constraints on the model performance. It consists
of two principal contributions. In Chapter 3, we propose a novel approach based on
convex combinations of local metrics defined on regions of the input space. The
learning algorithm accounts for the topological characteristics of the space and
fosters smoothness in prediction between nearby regions. In Chapter 4, we introduce
a new decentralized algorithm for collaboratively learning personalized models from
data naturally partitioned by user. A regularization term, based on a similarity
graph between users, promotes smoothness between learned models.

Part III is devoted to scaling SVMs using locally-linear learning by landmark
similarity. In Chapter 5, we introduce the formulation of Landmark-based SVMs
and analyze its computational and memory complexities, and its discriminatory
power, both empirically and theoretically. Additionally, we empirically study the
impact on model performance of the amount of landmarks, also depending on the
method for selecting them. In Chapter 6, we extend Landmark-based SVMs to the
multi-view setting, where data is observed in multiple feature spaces, and propose
an imputation technique for adapting our method to the circumstance of missing
views, i.e. when views of certain points are missing from the dataset.
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Learning by Partitioning the
Space
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3
Learning Convex Combinations of
Local Metrics

This chapter is based on the publication

Valentina Zantedeschi, Rémi Emonet, and Marc Sebban. Metric learning as convex
combinations of local models with generalization guarantees. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 1478–1486,
2016.

In this chapter, we describe a method for overcoming the issues related to data
partitioning-based local learning. Through convex combinations of local models
regularized considering the topological characteristics of the input space, we enhance
typical local learning techniques. Doing so, we obtain smoother predictions, we
avoid over-fitting and we improve the discriminatory capabilities of the final models.
We focus our work on metric learning, a framework allowing to improve numerous
machine learning approaches by optimizing the distances or similarities for the task
at hand such that they reflect the specificities of the data. In this field, local metric
learning has already been shown to be very effective, especially to take into account
non linearities in the data. However, it is well known that local metric learning (i)
can entail over-fitting and (ii) face difficulties in comparing two instances that are
assigned to two different local models.

Starting from a partition of the space in regions and a model (a score function)
for each region, we tackle these issues by defining a metric between points as a
weighted combination of the local models. A weight vector is learned for each pair
of regions, and a spatial regularization is introduced to ensure that the weight
vectors evolve smoothly and that nearby models are favored in the combination.
The proposed approach, called Convex Combinations of Local Models (C2LM),
has the particularities of being defined in a regression setting, of working implicitly
at different scales, and of being generic enough to be applicable to both similarities
and distances.

53
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The chapter is structured as follows: we first give the background notions of Metric
Learning and its state of the art techniques in Section 3.1; in Section 3.2 we illustrate
our method and in Section 3.3 prove its theoretical guarantees using the framework
of algorithmic robustness; finally, in Section 3.4 we carry out experiments with
datasets using both distances (perceptual color distances, using Mahalanobis-like
distances) and similarities (semantic word similarities, using bilinear forms), showing
that our method consistently improves regression accuracy even in the case when
the amount of training data is small.

3.1 A brief introduction to metric learning

In many machine learning tasks, like classification, clustering or ranking, decisions
are based on distance or similarity functions, which are indistinctly called metrics.
These functions are utilized to compare objects, with the aim of determining at
which degree the objects should be treated similarly. Intuitively and following
the saying “birds of a feather flock together”, when an algorithm is faced with
examples similar to previously encountered ones, it should identify them and act
in a similar way. For instance, one of the simplest non-parametric classifiers, the
Nearest Neighbors classifier [50], bases its decisions purely on the classes of the
closest labeled inputs, which are selected according to a distance function defined
on the input space, such as the Euclidean distance (see Figure 3.1). To classify an
unlabeled input, the most frequent class among the points judged relevant is used.
It is evident how the choice of metric is critical in the final performance of this
classifier.

In general, these fundamental functions can take the form of distances or similarities.
We give, in the following, the formal definitions of both notions.

Definition 3.1 (Similarity) Given a vector space X ⊂ Rd, a similarity (or dissimilarity)
function is any pairwise real-valued measure s : X 2 → R that quantifies the similarity
(or dissimilarity) between any pair (x1,x2) ∈ X 2.

A similarity measure should take large and positive values for similar objects and
large and negative numbers for dissimilar ones. A dissimilarity, conversely, assigns
positive values to dissimilar pairs and negative values to similar ones.

Notice that Kernels, presented in 2, are particular types of similarity functions that
are symmetric and positive semidefinite.

Definition 3.2 (Distance) Given a vector space X ⊂ Rd, a distance function is any
function d, satisfying ∀x1,x2,x3 ∈ X 3
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Figure 3.1 – K Nearest Neighbors classifier: The goal is to classify the instance marked by
a question mark. The labeled inputs (the filled circles) are ranked based on their distance
from the unlabeled point, computed here as the Euclidean distance. A majority vote of the
closest K points is, then, performed to affect a label to the considered point. The choice
of the distance in this task is fundamental for meaningful predictions. Moreover, notice
how the chosen number of neighbors K influences the final decision.

1. d(x1,x2) ≥ 0 (non-negativity);

2. d(x1,x2) = 0 iff x1 = x2 (identity of indiscernibles);

3. d(x1,x2) = d(x2,x1) (symmetry);

4. d(x1,x2) ≤ d(x1,x3) + d(x2,x3) (triangle inequality).

Typical examples of distance and similarity functions for feature vectors, i.e. non-
structured data, are the Euclidean distance and the Cosine similarity.

Example 3.1 (Euclidean Distance)

∀x1,x2 ∈ X 2, d(x1,x2) =

 d∑
i=1

(x1i − x2i)
2


1
2

= ‖x1 − x2‖2

expresses the distance between pairs of vectors as the length of the line segment
connecting them.

Example 3.2 (Cosine Similarity)

∀x1,x2 ∈ X 2
6=0, s(x1,x2) =

〈x1,x2〉
‖x1‖2 ‖x2‖2

expresses the similarity between non-zero vectors as the cosine of the angle between
them, thus it returns values in the interval [−1, 1].
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Standard metrics, as the ones just defined, are usually employed because they are
easy to set up, as they are non-parametric. Yet, in many cases, these functions fail
in reflecting the correspondences between data instances. Moreover, their lack of
flexibility makes them unsuitable to some problems. In these cases, it is helpful to
learn a parametric metric adapted to the application at hand. In order to enable
an algorithm to capture the characteristics of the data, a lot of work has gone
during the past ten years into automatically optimizing metric functions, topic
referred to as metric learning [17, 102]. The idea of such approaches is learning
application-dependent distance or similarity functions, that capture the peculiarities
of the data and remain robust to data changes, ultimately to make the task easier
to solve.

A typical metric learning approach consists of learning a linear Mahalanobis-like
metric of the form

dA(x1,x2) =
√
(x1 − x2)TA(x1 − x2)

parametrized by A ∈ Rd×d a positive semi-definite matrix (A � 0) whose compo-
nents are optimized to express the geometry of the space. Notice that for a A that
equals to I, the identity matrix, the metric boils down to a Euclidean distance.
Furthermore, by applying to A the Cholesky decomposition (A = LTL), it becomes
clear how computing this distance function corresponds to computing the Euclidean
distance in a new space, where the data has been linearly transformed through L,
an upper triangular matrix. It is also possible to enforce additional constraints on
the matrix A that result in interesting properties of the distance: for a diagonal A,
the distance boils down to weighting the components of the input space and for a
low-rank A (rank(A) < d), as L becomes rectangular, a dimensionality reduction
is applied to the data while computing the distance.

Another common parametric metric is the Bilinear similarity. It takes the form

sA(x1,x2) = xT1 Ax2

for a given matrix A ∈ Rd×d and can be seen as a generalization of the Cosine
similarity.

The d× d parameters of these metrics can be optimized using auxiliary information:
pair-wise constraints (knowing if two instances are similar or dissimilar) or through
triplets (considering that from (xi,xj ,xl) xi should be more similar to xj than to
xl). For instance, the authors of [207] learn a metric that minimizes the distance
between similar examples and maximizes the distance between dissimilar ones and
show that it improves results in clustering tasks. Other common metric learning
frameworks are LMNN (Large-Margin Nearest Neighbors) proposed in [203] for
improvingK-Nearest Neighbor classification and ITML (Information-Theoric Metric
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Figure 3.2 – Limitation of local metric learning: While two points belonging to the same
region (e.g. in R1) can be managed by the corresponding locally-learned metric (depicted
as an ellipse), two points from different regions (e.g. in R2 and R4) cannot be accurately
compared using a single local metric.

Learning) introduced in [52], which improves KNN and, by means of the LogDet
regularization, handles constraints and prior knowledge on the metric.

3.1.1 Local Metric Learning

On most occasions, a unique global metric is learned over the input space, typically
taking the form of a (linear) geometric transformation. This is also the case also
for the previously mentioned LMNN [203] and ITML [52]. However, a global and
linear metric, such as the Mahalanobis distance, may not necessarily perform well
for all problems, especially when working with data that admits multi-modalities
and/or non-linearities. In those cases, local metric learning has been shown to be
effective because of its flexibility in capturing geometric variations of the input
space. Different approaches are viable: learning a metric per instance and use the
metric of the closest training input for testing [72, 82]; in a supervised context,
learning a metric per class [25, 82]; partitioning the space into regions and learning
a metric per region [156, 204].

While these local metric learning approaches can adapt well to variations on the
input space, they are quite sensitive to overfitting, especially when the local metrics
are learned independently from each other, resulting in non-smooth functions. Some
recent solutions have been proposed to alleviate overfitting, for instance by feature
space dimensionality reduction [87], by applying manifold regularization [199] or
by deploying generative models [147]. However, those approaches mainly focus on
improving the results locally, i.e. while comparing instances of the “same region”
of the input space. Therefore, they are not well suited to compare points far from
each other. This limitation is illustrated in Figure 3.2.
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A way to foster smoothness and to obtain globally relevant metrics is learning
linear or non-linear combinations of local metrics or kernels (see Multiple Kernel
Learning [6] and [84]) for comparing instances. For instance, the authors of [199]
propose to jointly optimize a set of basis metrics (one per anchor point) and linear
combinations of these metrics (one per input instance) while constraining them to
vary smoothly over the instances. Moreover they propose a regularization based
on the geometric characteristics of the instance space to ensure smoothness in the
decision function. The weight vectors of close instances are then similar and reflect
the geometric characteristics of the input space. However, the learned metrics are
no longer symmetric and they are only accurate for comparing instances relatively
close to each other. Another example is given in [87], where the authors propose to
learn linear combinations while controlling the rank of the metric matrices, i.e. the
total number of parameters of the problem. Doing so, they penalize too complex
solutions, which are probably too tailored for the training instances and thus have
lost generalization power on unseen instances.

Both aforementioned frameworks [87, 199] define a linear combination of metrics for
each input instance which considerably affects the complexity of their formulations:
the number of parameters to be learned increases with the size of the dataset. We
claim that the potential accuracy gain is not enough to justify the computational
cost and, in any case, it entails some approximations when testing on unseen data
(they both assign the weight vector of the closest training instance in term of
Euclidean distance).

3.2 Convex combinations of local models

We propose, here, to tackle the previously highlighted issues by learning convex
combinations of local metrics that are not only locally good, but also globally
relevant. C2LM optimizes for any pair of regions a vector of weights corresponding
to the contribution of each local model while computing the distance or similarity
between two points belonging to those regions (see Figure 3.3). By means of
manifold and vector similarity regularization, we constrain the convex combinations
to reflect the topological characteristics of the input space and to vary smoothly.
Since our principal goal is to learn the influence of each local metric, we will assume
in the rest of this chapter that the input space has been previously partitioned
into regions and that on each region a local metric has been learned to express its
underlying geometry.

Our approach has another peculiarity: unlike the current trend in metric learning,
it lies in a regression setting rather than in a classification one. Indeed, it is
worth noticing that most metric learning methods use side information brought
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Figure 3.3 – Illustration of the influence of the local models based on region distances:
the more influential a local metric for the learned metric is, the lighter the color of the
associated region. For example, the local models of regions R6, R5, R7, R1 and R11 are
more influential than those of the other regions, while computing the distance between a
point in R6 and a point in R5.

by pairs of training examples in the form of must-link/cannot-link constraints
(also called positive/negative pairs) or relative constraints (also called training
triplets). A metric learning method typically aims to optimize the parameters of
the metric such that it best agrees with those constraints. It turns out that in
some applications, the side information provided by the problem of interest simply
relies on pairs of examples associated with a target score of (dis)similarity. This is
the case in color distance perception (that will constitute one of our two series of
experiments), where the training data takes the form of pairs of color patches and
their reference perceptual distance ∆E00 [167]. This is also the case for databases
made of pairs of strings and their corresponding semantic distance (see, e.g., the
well known WordSim353 dataset1). A last example comes from temporal sequence
alignments, where training data can be made of pairs of acoustic signals and their
corresponding optimal alignment (e.g. see [109]). In such contexts, state of the art
metric learning algorithms face difficulties in accurately capturing the idiosyncrasies
of the data. Indeed, the price to pay often implies a dramatic increase in the
number of constraints to satisfy. Here, we overcome this issue by dealing with
metric learning in a regression setting that allows us to directly fit the target scores.

In the next section, we present our optimization problem for learning convex
combinations of local models which takes the form of a least absolute errors regression
problem. For the sake of clarity, we first give the notations we will employ in the
rest of this chapter.

1http://alfonseca.org/eng/research/wordsim353.html

http://alfonseca.org/eng/research/wordsim353.html
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3.2.1 Notations

Let U be the instance-pair space, i.e. the set of pairs (x1,x2) ∈ X 2, and y : U →
Y ⊂ R be a metric function (the ground-truth metric that can be a distance or a
similarity). We assume that U is a compact [66] convex metric space w.r.t. a norm
‖.‖ and X ⊂ Rd. Thus, there exists a constant R such that ∀x ∈ X , ‖x‖ ≤ R. We
will refer to Z = U ×Y as the set of all possible valued pairs z = (x1,x2, y(x1,x2)),
where (x1,x2) ∈ U is a pair of instances and y(x1,x2) is the associated target value.
We also denote the set of m training pairs by S = {zi ∈ Z}mi=1.

3.2.2 Optimization Problem

Let us suppose that the instance space X has been partitioned into K clusters or
regions (for instance using K-Means according to the Euclidean distance), denoted
{Rk}Kk=1 and, on each cluster, a local model sk : U → R has been defined in order
to compare instances belonging to that specific cluster. Let S = {sk(.)}Kk=1 be the
set of metric functions related to the local models. Our aim is to define for each pair
of regions (Ri,Rj) = Rij a metric function tij : U → R as a convex combination of
S and that is also symmetric. The problem we are trying to solve is learning how
to compare instances that potentially belong to different clusters. For each pair of
regions Rij , we will learn a vector Wij ∈ RK of positive weights representing the
contribution of each local model while estimating the similarity between an instance
x1 ∈ Ri and an instance x2 ∈ Rj . Therefore, the new metric function tij(x1,x2)

related to that pair of regions can be expressed as follows:

tij(x1,x2) =
K∑
k=1

Wijksk(x1,x2). (3.1)

As we want the overall function to be a metric, we constrain the K ×K matrix of
vectorsW = [W11,W12, . . . ,WKK ] to be symmetric. Thus, ∀i, j = 1, . . . ,K, Wij =

Wji.
We define a loss function ` : Z → R over the training set S, corresponding to
the gap between tij and the ground truth metric valued for each pair z = (x1 ∈
Ri,x2 ∈ Rj , y(x1,x2)):

`(W , z) = `(Wij , (x1 ∈ Ri,x2 ∈ Rj , y(x1,x2)))

= |tij(x1,x2)− y(x1,x2)| . (3.2)

Among all possible norms, we choose to define our loss function as an l1-norm,
i.e. the least absolute deviations, because of its robustness to outliers. This loss is
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assumed to be uniformly upper-bounded by a constant B, i.e. for any pair z ∈ Z
the deviation of the predicted value from the expected one is finite. We define our
optimization problem as follows:

arg min
W

FS(W ) = R̂S(W ) + λ1D(W ) + λ2S(W )

s.t. ∀i, j = 1, ...,K :
K∑
k=1

Wijk = 1 andWij ≥ 0 (3.3)

where

R̂S(W ) =
1
m

∑
z∈S

`(W , z) =

=
1
m

K∑
i=1

i∑
j=1

∑
z∈Rij

∣∣∣∣∣∣
K∑
k=1

Wijksk(x1,x2)− y(x1,x2)

∣∣∣∣∣∣ (3.4)

is the mean loss over all training pairs, and

D(W ) =
K∑
i=1

i∑
j=1
‖Eij �Wij‖22 (3.5)

S(W ) =
K∑
i=1

i∑
j=1

K∑
i′=1

i′∑
j′=1

Kiji′j′
∥∥∥Wij −Wi′j′

∥∥∥2
2

(3.6)

are two regularizers used to avoid overfitting and λ1 and λ2 are the corresponding
regularization parameters. The notation � indicate the entry-wise product.

The first term, D(W ) takes into account the prior influence of each local model in
the computation of a weight vector. For instance, for a vector Wij related to the
pair of regions (Ri,Rj), we penalize a solution that has big weights associated with
the local models that should not be influential in computing the associated metric.
As a matter of fact, Eij ∈ RK is a vector whose component Eijk represents the
prior influence of the metric sk. The bigger the component Eijk is, the smaller the
learned entry Wijk. Eijk can be estimated in different ways. In the experiments,
we base this estimation on the topological characteristics of the decomposition of
the space U . As we can see in Figure 3.3, a local model defined on a region close to
the pair of regions is more influential than one far from it.

The second term, S(W ), expresses the correlations between different weight vectors.
Through it, we force the space of vectors of weights to be smooth. In other words,
we constrain the vectors defined on close pairs of regions to be similar. As for the
prior influence, we base the estimation of the similarity between two vectors Wij

and Wi′,j′ , expressed by the parameter Kiji′j′ , on the geometric characteristics of
the instance space U (see Figure 3.4).

In order to evaluate the prior influence of local models and the similarity be-
tween vectors of weights, we need to define a distance function between regions.
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Figure 3.4 – Similarity of a pair of regions: based on proximity, the vector W56 should be
more similar to the vector W11 (in black) than to the vector W49 (in gray).

Figure 3.5 – Minimum Spanning Tree: the distance between two regions corresponds
to the number of edges of the shortest path connecting them. E.g., dist(R5,R7) = 1,
dist(R56,R4) = dist(R5,R4) + dist(R6,R4) = 4 and dist(R56,R49) = 5.

We chose to build the Minimum Spanning Tree of the complete graph of re-
gion centroids (computed using the Euclidean distance) and then to express
the distance between two regions as the number of edges of the shortest path
connecting them (see Figure 3.5). Therefore, for our experiments, we will con-
sider Eijk equal to dist(Rij ,Rk) = dist(Ri,Rk) + dist(Rj ,Rk) and the similarity
Kiji′j′ = exp(−dist(Rij ,R′i′j)) exponentially decreasing with dist(Rij ,Ri′j′) =

min(dist(Ri,Ri′) + dist(Rj ,Rj′), dist(Ri,Rj′) + dist(Rj ,Ri′)).

The learned combinations of local models are convex, as we fix their weights to be
non-negative and constrain them to sum to one, and the resulting optimization
problem 3.3 is convex. Note that the number of parameters to learn depends on
the number of regions K defined on the input space (O(K3)). Consequently, the
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number of constraints is also directly proportional to K3. This is a main advantage
of applying C2LM to problems providing pairs of instances and their target score, if
we consider the fact that K � m: in order to adapt the state of the art approaches
(meant for classification tasks) to this kind of problems, a number of constraints
directly proportional to the number of instances of the dataset has to be added.

3.3 Robustness and generalization bound

In this section, we study the generalization ability of our algorithm according to the
notion of Algorithmic Robustness introduced in [209]. As emphasized in Chapter 1,
this framework allows us to derive generalization bounds when the variation in
the loss associated with two nearby training and testing examples is bounded.
This setting is particularly adapted to our framework because it is based on a
partition of the input space as we defined it for our problem. The closeness of
two examples is based on the notion of covering number. By making use of the
Bretagnolle-Huber-Carol inequality and proving that the metric functions sk(.) are
Lipschitz continuous, we can derive a generalization bound for C2LM.

3.3.1 Theoretical Guarantees

Let us define a partition of the space Z of all possible valued pairs z = (x,x′, y(x,x′))
in order to establish if two pairs of instances are close. The partition is based on
the notion of diameter and covering number of a metric space.

Definition 3.3 (Diameter) The diameter of a metric space (M, ρ) is defined as:

diamρ(M) = sup
x,x′∈M

ρ(x− x′). (3.7)

Definition 3.4 (Covering Number [189]) For a metric space (M, ρ), and T ⊂M, we
say that T̂ ⊂ M is a γ-cover of T if ∀t ∈ T , ∃t̂ ⊂ T̂ such that ρ(t, t′) ≤ γ. The
γ-covering number of T is

N (γ,T , ρ) = min{#T̂ |T̂ is a γ-cover of T}. (3.8)

In other words, the γ-covering number of a metric space corresponds to the minimal
number of regions of radius at most γ > 0 needed to cover it.

In order to define the closeness between instances of a metric space Z = U ×
Y , both the input U and the target Y spaces have to be partitioned. In most
works [15, 129, 140, 144], Y is the finite set of labels, so its covering number
is exactly equal to #Y and two instances are considered close if they have the
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same label. In our setting, we partition the space U into N (γ1/2,U , ‖.‖2) subsets
and the space Y into N (γ2/2,Y , |.|), so that any region of U (resp. Y ) has a
diameter smaller than γ1 (resp. γ2). In this way, if z = (x1,x2, y(x1,x2)) and
z′ = (x′1,x′2, y(x′1,x′2)) belong to the same subset of Z, then ‖x1 − x′1‖2 ≤ γ1,
‖x2 − x′2‖2 ≤ γ1 and |y(x1,x2)− y(x′1,x′2)| ≤ γ2. In the rest of this chapter, we
will refer to H = N (γ1/2,U , ‖.‖2)N (γ2/2,Y , |.|) as the covering number of Z.

The following concentration inequality provides a probability bound on the deviation
of a multinomial random variable from its expected value. We will use it to obtain
information about the theoretical distribution of the valued pairs z ∈ Z over the
regions of the partition.

Proposition 3.1 ([189]) Let (|M1|), ..., |MH |) an i.i.d. multinomial random variable
with parameters m and (p(C1), ..., p(CH)). By the Bretagnolle-Huber-Carol inequal-
ity we have: P(

∑H
i=1

∣∣∣ |Mi|
m − p(Ci)

∣∣∣ ≥ λ) ≤ 2H exp −nλ
2

2 , hence with probability at
least 1− δ,

H∑
i=1

∣∣∣∣∣p(Ci)− |Mi|
m

∣∣∣∣∣ ≤
√

2H ln 2 + 2 ln(1/δ)
m

. (3.9)

We can now derive a PAC generalization bound for C2LM. We first prove that our
algorithm is robust, which requires to prove that ∀k = 1, ...,K : sk(.) is θk-Lipschitz
(refer to Chapter 1 for a definition). This property is fundamental for the robustness
of our algorithm: the fact that the functions S = {sk(.)}Kk=1 are θk-Lipschitz
continuous implies that any linear combination of them returns similar values when
evaluated on instances belonging to the same region of the partition. According to
the nature of the local metric functions sk(.), the proof of θk-Lipschitzness varies.
In Sections 3.3.2 and 3.3.3, we will instantiate sk(.) with Mahalanobis-like distances
and bilinear similarities. The derivations of the Lipschitz continuity of such metrics
can be found in Appendix C.

Lemma 3.1 If ∀k = 1, ...,K, sk(.) is θk-Lipschitz w.r.t. the norm ‖.‖2, the optimization
problem (3.3) is (H, θ

√
2γ1 + γ2)-robust, with θ = maxk=1..K θk.

Proof. We can partition Z into H = N (γ1/2,U , ‖.‖2)N (γ2/2,Y , |.|) disjoint sub-
sets, such that if z = (x1,x2, y(x1,x2)) and z′ = (x′1,x′2, y(x′1,x′2)) belong to
the same subset Ch, then x1,x′1 ∈ Ri so ‖x1 − x′1‖2 ≤ γ1, also x2,x′2 ∈ Rj so
‖x2 − x′2‖2 ≤ γ1 and |y(x1,x2)− y(x′1,x′2)| ≤ γ2. We have, then:
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∣∣∣`(Wij , z)− `(Wij , z′)
∣∣∣ = (3.10)∣∣∣∣∣∣

∣∣∣∣∣∣
K∑
k=1

Wijksk(x1,x2)− y(x1,x2)

∣∣∣∣∣∣−
∣∣∣∣∣∣
K∑
k=1

Wijksk(x
′
1,x′2)− y(x′1,x′2)

∣∣∣∣∣∣
∣∣∣∣∣∣

≤

∣∣∣∣∣∣
K∑
k=1

Wijksk(x1,x2)−
K∑
k=1

Wijksk(x
′
1,x′2)− y(x1,x2) + y(x′1,x′2)

∣∣∣∣∣∣ (3.11)

≤

∣∣∣∣∣∣
K∑
k=1

Wijk

(
sk(x1,x2)− sk(x′1,x′2)

)∣∣∣∣∣∣+
∣∣∣y(x1,x2)− y(x′1,x′2)

∣∣∣
≤

K∑
k=1

∣∣∣Wijk

∣∣∣ ∣∣∣sk(x1,x2)− sk(x′1,x′2)
∣∣∣+ γ2 (3.12)

≤
K∑
k=1

∣∣∣Wijk

∣∣∣ θk
∥∥∥∥∥
(
x1
x2

)
−
(
x′1
x′2

)∥∥∥∥∥
2
+ γ2 (3.13)

≤ θ

∥∥∥∥∥
(
x1
x2

)
−
(
x′1
x′2

)∥∥∥∥∥
2

K∑
k=1

Wijk + γ2 (3.14)

≤ θ
√

2γ1 + γ2 . (3.15)

Eq. (3.11) is due to the reverse triangle inequality. Inequality (3.13) is valid because
sk is multi-variate θk-Lipschitz continuous w.r.t. the norm ‖.‖2 (see below). In
Eq. (3.14), we define θ = maxk=1,...,K θk and recall that ∀i, j = 1, ...,K : Wij ≥ 0.
Eq. (3.15) is due to ∑K

k=1Wij = 1.
√

2γ1 is the maximum ‖.‖2 distance between
the two vectors.

We can now derive the generalization bound of C2LM.

Lemma 3.2 As FS(W ) (3.3) is (H, θ
√

2γ1 + γ2)-robust and the training set S is
obtained from m i.i.d. draws according to a multinomial random variable, for any
δ > 0 with probability at least 1− δ, we have:

|RD(W )− R̂S(W )| ≤ θ
√

2γ1 + γ2 +B

√
2H ln 2 + 2 ln 1/δ

m
. (3.16)

Proof.

|RD(W )− R̂S(W )| =

=

∣∣∣∣∣∣Ez∼D (`(W , z))− 1
m

∑
z′∈S

`(W , z′)

∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
K∑
i=1

K∑
j=1

E (`(Wij , z ∈ Rij)) p(Rij)−
1
m

K∑
i=1

K∑
j=1

∑
z′∈Rij

`(Wij , z′)

∣∣∣∣∣∣∣



66

=

∣∣∣∣∣∣
K∑
i=1

K∑
j=1

E (`(Wij , z ∈ Rij)]) p(Rij)−
K∑
i=1

K∑
j=1

E (`(Wij , z ∈ Rij))
mij

m

∣∣∣∣∣∣
+

∣∣∣∣∣∣∣
K∑
i=1

K∑
j=1

E (`(Wij , z ∈ Rij))
mij

m
− 1
m

K∑
i=1

K∑
j=1

∑
z′∈Rij

`(Wij , z′)

∣∣∣∣∣∣∣ (3.17)

≤

∣∣∣∣∣∣
K∑
i=1

K∑
j=1

E (`(Wij , z ∈ Rij))
(
p(Rij)−

mij

m

)∣∣∣∣∣∣
+

∣∣∣∣∣∣∣
1
m

K∑
i=1

K∑
j=1

∑
z,z′∈Rij

E
(
`(Wij , z)− `(Wij , z′)

)∣∣∣∣∣∣∣
≤ max

z∈Rij
(`(Wij , z))

K∑
i=1

K∑
j=1

∣∣∣∣p(Rij)− mij

m

∣∣∣∣
+

1
m

K∑
i=1

K∑
j=1

∑
z,z′∈Rij

max(`(Wij , z)− `(Wij , z′))

≤ B

√
2H ln 2 + 2 ln(1/δ)

m
+ θ
√

2γ1 + γ2. (3.18)

Eq. (3.17) is due to the triangle inequality. The first term of Eq. (3.18) is because B
is the upper bound of the loss function and because of the Bretagnolle-Huber-Carol
inequality (3.1), and the latter is due to the robustness of the problem.

It is worth noting that this bound tends to zero as the covering number H increases
(γ1 → 0 and γ2 → 0) and the number of samples m → ∞. In the following
subsections, we instantiate sk(.) with two different metric functions: first as a
Mahalanobis-like distance and then as a bilinear similarity.

3.3.2 Derivation for Mahalanobis-like Local Metrics

The Mahalanobis distance of a pair (x1,x2) valued for a local model k can be written
as sk(x1,x2) = dAk(x1,x2) =

√
(x1 − x2)TAk(x1 − x2) with Ak the corresponding

(learned) PSD matrix whose Cholesky decomposition is Ak = LTkLk. Thus, our
objective function takes the following form:

FS(W ) =
1
m

K∑
i=1

i∑
j=1

∑
z∈Rij

∣∣∣∣∣∣
K∑
k=1

WijkdAk(x1,x2)− y(x1,x2)

∣∣∣∣∣∣
+ λ1D(W ) + λ2S(W ) (3.19)

where A = {A1, ..,AK} is a set of Mahalanobis metrics.



3.3. Robustness and generalization bound 67

Lemma 3.3 ∀k = 1, ...,K the Mahalanobis distance dAk(x1,x2) is θk-Lipschitz w.r.t.
the norm ‖.‖2, with θk =

√
2 ‖Lk‖2.

Proof. See Appendix C.

Lemma 3.4 FS(W ) is (H, 2γ1 ‖L‖2 + γ2)-robust and for any δ > 0 with probability
at least 1− δ, we have:

|RD(W )− R̂S(W )| ≤ 2γ1 ‖L‖2 + γ2 +B

√
2H ln 2 + 2 ln 1/δ

m
. (3.20)

The constant ‖L‖2 corresponds to maxk=1,...,K ‖Lk‖2 so that θ =
√

2 ‖L‖2, because
θk =

√
2 ‖Lk‖2.

3.3.3 Derivation for Local Bilinear Similarities

The bilinear similarity of a pair (x1,x2) can be written as sk(x1,x2) = xT1 Akx2.
Thus, our problem becomes:

FS(W ) =
1
m

K∑
i=1

i∑
j=1

∑
z∈Rij

∣∣∣∣∣∣
K∑
k=1

Wijkx
T
1 Akx2 − y(x1,x2)

∣∣∣∣∣∣
+ λ1D(W ) + λ2S(W ) (3.21)

where A = {A1, ..,AK} is a set of bilinear similarities. Recalling that ∀x ∈ X , ‖x‖ ≤
R, with R ∈ R+:

Lemma 3.5 ∀k = 1, ...,K the bilinear similarity sk(x1,x2) = xT1 Akx2 is θk-Lipschitz
w.r.t. the norm ‖.‖2, with θk =

√
2 ‖Ak‖2R.

Proof. See Appendix C.

Lemma 3.6 FS(W ) is (H, 2γ1 ‖M‖2R)-robust and for any δ > 0 with probability at
least 1− δ, we have:

|RD(W )− R̂S(W )| ≤ 2γ1 ‖M‖2R+ γ2 +B

√
2H ln 2 + 2 ln 1/δ

m
. (3.22)

‖A‖2 = maxk=1,...,K ‖Mk‖2 so that θ =
√

2 ‖A‖2R, because θk =
√

2 ‖Ak‖2R.
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Figure 3.6 – Representation of the six faces of the RGB cube. Two pairs of colors at the
same Euclidean distance are selected, though the upper pair is perceptually closer than the
lower one.

3.4 Experiments

In this section, we aim at showing that C2LM is well suited to deal with both
distance and similarity functions. Therefore, we empirically evaluate our method
on two applications: first on the estimation of perceptual color distances and then
on the estimation of semantic similarities between words.

3.4.1 Applications and Datasets

Modeling perceptual color distances It is well known that a human observer
cannot distinguish all the shades corresponding to the different mixtures of light
wavelengths. We are more sensitive to medium wavelengths (to green/yellow colors)
than to short and large wavelengths of the visible spectrum. Moreover, human
perception strongly depends on variations of visual conditions, such as brightness,
luminance, background changes, and so on. The perceived difference between colors
cannot be modeled using an additive color space as the RGB space, because the
corresponding distance is not proportional to the Euclidean distance on that space
(see Figure 3.6).

Because numerous Computer Vision tasks can benefit from a good perceptual color
distance, such as image segmentation, object detection and tracking, a lot of work
has been put into finding a way of estimating it. In the past, several perceptual color
spaces have been proposed to better model the human color perception: CIELuv
and CIELab (see [184]) are two examples of such efforts to model uniform perceptual
spaces. However, these spaces are still sensitive to some visual variations and can
only be used under standard image acquisition conditions. This is because camera
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configurations, such as white balance, demosaicing and gamma correction, have a
huge impact on the final perception of the color distances.

C2LM is particularly suited to the task of modeling a perceptual color distance
that is invariant to acquisition conditions, by learning the relationships between
variations in visual conditions and final perceived distance. For our experiments,
we use the dataset built by Perrot et al. [156]. The dataset consists of 29580
color patches, expressed in their RGB coordinates and uniformly distributed on
the RGB cube, and 41800 pairs of color patches, taken under several viewing
conditions and with 4 different cameras, with their reference perceptual distance
∆E00. Such a target distance corresponds to the perceptual color distance and
has been computed using the CIEDE2000 color-difference formula [167] based on
CIELab space, under controlled conditions. However, it is reliable only under
standard viewing conditions (illuminant D65, illuminance of 1000 lx, etc. defined
by the International Commission on Illumination CIE) so it cannot be used in
all circumstances. We propose, here, to approximate the true perceptual distance
between two colors that is independent of the viewing conditions. For this aim, the
color patches are clustered using k-means (using the Euclidean distance on the RGB
space) and on each so-found region a local model is learned as a Mahalanobis-like
distance (using the color pairs whose patches both belong to that region). We then
apply our method for learning linear combinations of those distance functions with
manifold regularization, as detailed in Section 3.2. We compare our method to [156],
where the authors learn a set of Mahalanobis-like metrics independently from each
other: they cluster the color patches using k-means and learn a local metric on
each cluster and a global one with the color pairs whose patches belong to different
clusters; they compute the distance between two colors using the local distance if
they belong to the same cluster or the global distance if they do not. As [156], we
evaluate our method on two different tasks (testing on unseen colors and on color
pairs from unseen cameras).

Modeling semantic similarities The semantic similarity between words is
defined as the measure of closeness in meaning between two terms. It is a measure
defined by human perception and it cannot be expressed by exact rules. Nevertheless,
it can be estimated by representing the words as vectors of a continuous space (word
embedding) and computing their distance or similarity, for instance the Euclidean
distance or the cosine similarity. We show how a word embedding can be enhanced
using our method. As in the previous application, we learn a local model on each
cluster of words (the clustering procedure accomplished using k-means with the
Euclidean distance on the word embedding) and then we apply C2LM on the
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(a) Results on unseen colors.
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(b) Results on unseen cameras.
Figure 3.7 – Comparison of our method and local metric learning approaches on the
application of perceptual color distance estimation. The used criterion is the mean loss
over the test instances.

learned local models, which, in this case, are bilinear forms (see 3.3.3) computed
independently using the following optimization problem:

arg min
Bk

1
m

∑
z∈Rkk

∣∣∣xT1 Bkx2 − y(x1,x2)
∣∣∣+ ‖Bk‖F . (3.23)

For our experiments, we extracted the word embedding from the Reuters News
stories2 text corpus using the Hellinger PCA as presented in [111]. We then evaluate
different methods on the WordSim353-similarity dataset: it is composed of 353 pairs
of english words and for each pair we have at our disposal its semantic similarity
as estimated by a human expert. We will compare our method with computing
the cosine similarity directly on the embedding and with learning a set of local
bilinear similarities and a global one. Because the cosine similarity is capable of
predicting scores only in the interval [−1, 1] and the similarity scores of the dataset
are between 0 and 10, we first rescaled the target scores into the interval [−1, 1].

3.4.2 Implementation and Results

We implemented our algorithm using the Cvxpy library3 and its SCS solver
(see [148]). The code is available at https://gitlab.univ-st-etienne.fr/
vzantedeschi/c2ml/tree/master. For our experiments, we computed the best
values for parameters λ1 and λ2 executing a grid search hyperparameter optimiza-
tion by cross-validation: we fixed them to λ1 = 0.01 and λ2 = 10000 for the first
application and to λ1 = 0.0001 and λ2 = 100 for the second one.

2http://about.reuters.com/researchandstandards/corpus/
3cvxpy.readthedocs.org/en/latest/

https://gitlab.univ-st-etienne.fr/vzantedeschi/c2ml/tree/master
https://gitlab.univ-st-etienne.fr/vzantedeschi/c2ml/tree/master
http://about.reuters.com/researchandstandards/corpus/
cvxpy.readthedocs.org/en/latest/
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Figure 3.8 – Comparison of our method and local metric learning approaches on the
application of semantic similarity estimation. The used criterion is the mean loss over
the test instances.

In Figure 3.7, we represent the variation of the test loss over the number of clusters
for the two tasks. For the application on unseen colors, we show the mean results
of a 6-fold cross validation of the color patches set, obtained from five iterations.
We notice that as the number of clusters increases the empirical test loss decreases:
a set of local metrics captures the underlying geometry of the color space much
better than a unique global metric (K = 1). Moreover, with a small number of
clusters, the learned linear combinations are more expressive than the local metrics:
thanks to the prior influence and similarity regularizations, we successfully prevent
the model from over-fitting the training instances. This trend is more and more
prominent as the number of clusters grows. For the application on unseen cameras,
we report the mean results of a 4-fold cross validation (leave one camera out) of the
color pairs set, iterated 3 times. Once again, our method outperforms the state of
the art. For both tasks, we can note that with a very limited number of clusters,
that is only 5, our test loss is always smaller than every test loss the approach
of [156] could attain, even with 30 clusters.

Concerning the application on semantic similarity, Figure 3.8 presents the mean
results of a 6-fold cross validation, iterated five times. We can note that learning
metrics on the word embedding gives better results than applying directly the cosine
similarity, but also that the local metrics fail to improve the test error with respect
to a global bilinear form. On the contrary, C2LM converges with a limited number
of clusters to an enhanced test error. We also notice that, against the trend, the
test error increases when passing from one to two clusters. This can be explained
by the fact that the quality of the local models is so poor that the learned convex
combinations of them cannot be good.
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3.4.3 Illustration of Learned Combinations

In this Section, we illustrate a metric learned using C2LM and compare it with
the one learned using a local metric learning approach.

In the context of the perceptual color distance, Figure 3.9 shows a 2D projection of
the contour lines of our learned combination of metrics, drawn around an arbitrary
point, in the RGB space. While using only local models causes a strong discontinuity
at the boundaries of the cluster (because one jumps from a local metric to the global
one), we can see that our learned metric is smoother. In addition, it is evident that,
while comparing points that do not belong to the same region, our metric is more
accurate because our method captures better geometric variations of the space than
a global linear metric.
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Figure 3.9 – On the left: contour lines obtained using [156]’s method; on the right: contour
lines obtained using C2LM.

3.5 Conclusion

In this chapter, we proposed a new method for enhancing local metric learning based
on a spatial partitioning of the inputs. We learned convex combinations of local
models given prior knowledge on their correlations, in order to attain smoothness
in the predictions and to avoid over-fitting. We proved that our learning algorithm
is theoretically founded w.r.t. the algorithmic robustness framework. Empirically,
we showed how our method improves the results on two different problems w.r.t.
both global approaches and local ones, based on data partitioning.

A direct extension of the method would be to learn simultaneously both the local
metrics and their linear combinations. The optimization problem would take the
form of a double regression, one over the points belonging to the same region and
one for all the others. In this way, we could guarantee that the local models perform
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well both locally and globally speaking by means of regularization and it would be
possible to derive a tighter generalization bound.

In the next chapter, we propose another local learning approach exploiting a
partition of the input data. However, we will tackle the problem of learning local
models from another perspective. We will consider a partition of the inputs that is
not based on spatial criteria, but on metadata, such as the user generating the data.
In addition, we will focus on a setting more constrained in terms of resources, which
will be limited, and privacy, because we will work with potentially sensitive data.





4
Boosting Personalized Models

This chapter is based on the publication

Valentina Zantedeschi, Aurélien Bellet, and Marc Tommasi. Decentralized Frank-
Wolfe boosting for collaborative learning of personalized models. In CAp, 2018.

In this chapter, we focus our work on learning local models on data partitioned
using a criterion other than spatiality. More precisely, we consider data generated
by a set of agents, that has been collected by their personal devices so that is
naturally clustered in subsets. Like in the previous chapter, we aim to learn
a local model per agent (using its local dataset), that we will denote hereafter
as personalized. Furthermore, in order to improve the generalization ability of
the optimized models, we add smoothing constraints based on a user similarity
criterion. However, unlike for C2LM, we optimize all personalized models in a
joint optimization problem taking into account both local optimality and overall
smoothness. Moreover, learning from personal data raises new challenges that we
need to take into account: the data collected by each user is extremely large and
is potentially sensitive. For these reasons, we consider a new learning paradigm
that is particularly suited to our scenario. Decentralized learning comprehends all
techniques working on a non-hierarchical graph of users, in which each user keeps
its data on-site and communicates with its neighbors only its model updates. Our
method exploits this decentralized architecture to learn personalized models in a
collaborative manner on a graph which reflects the similarities between users. As
we will illustrate throughout the chapter, we formulate our problem as a graph-
regularized l1-Adaboost and optimize it using Frank-Wolfe algorithm, in order to
get expressive models with minimal communication complexity. To make up for
the potential absence of background knowledge on the similarities between users,
we additionally introduce a formulation to jointly learn the personalized models
and the graph topology through an alternating optimization procedure.

The Chapter is organized as follows: in Section 4.1, we give an overview of decentral-
ized learning and its state of the art techniques; Section 4.3 introduces our problem
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formulation and the proposed decentralized algorithm; in Section 4.4, we analyze
the convergence rate, memory consumption and communication complexity of our
algorithm; Section 4.5 extends the previous framework by allowing us to optimize
the collaboration graph together with the classifiers; finally, we empirically compare
its performance to state-of-the-art decentralized techniques in Section 4.6.

4.1 New challenges in data collection

In the era of big data, the classical paradigm is to build huge data centers to collect
and process users’ data. This centralized access to resources and datasets simplifies
some procedures, such as building predictive models with machine learning, but it
comes with major drawbacks. From the company’s point of view, the need to gather
and analyze the data centrally induces high infrastructure costs. Furthermore, as
the server represents a single point of entry, one needs to ensure that it is secure
enough to prevent attacks that could put the entire user database in jeopardy. In
this respect, the recent GDPR European regulation imposes responsibility and
accountability: companies are expected to develop costly security measures and to
design private-by-design systems. On the user end, the drawbacks include limited
control over their own data as well as possible privacy risks, which may come from
the aforementioned attacks but also from potentially loose data governance policies
on the part of the companies. A more subtle problem is the risk of being trapped
in a “single thought” model which fades individual users’ specificities.

Figure 4.1 – In Centralized learning (on the left) all agents are connected to a central
node where their data is collected and processed. Conversely, in Decentralized learning (on
the right), the users are organized in a non-hierarchical graph where only model-updates
are passed between nodes.

For all these reasons and thanks to the advent of personal devices and their ever
increasing computational power and storage capacity, we are currently witnessing
a shift from the above centralized paradigm to a more decentralized one (see
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Figure 4.1). For instance, modern programming frameworks delegate large parts of
their code execution to the local devices, reducing communication costs and allowing
better personalization.1 In the context of machine learning, this shift translates into
keeping the data on the users’ devices and leveraging their resources to train the
predictive models in a collaborative manner. This requires a compromise on a key
assumption of more traditional distributed learning approaches, namely that the
data is balanced and uniformly distributed across machines [4, 13, 127, 166, 225, 226],
which is not realistic for local datasets generated by a diverse set of users.

4.1.1 Decentralized Learning Approaches

Traditional distributed approaches [4, 8, 13, 127, 166, 172, 225, 226] utilize a network
of workers for learning on large-scale datasets. By exploiting the computational
resources of the cluster of machines, such techniques offer ways of speeding up
computations, and possibly avoiding storage issues. This is achieved by coordinating
the machines to work in parallel on mini-batches of data. Generally, these approaches
make the assumption that data is evenly distributed over the network and is i.i.d..
As a consequence, they are by-design incapable of dealing with datasets like the ones
generated by networks of users. As a matter of fact, in these datasets, each user’s
sample is biased by the personal generation procedure, thus is not representative of
the global data distribution.

There are two main lines of work to cope with this kind of data. In federated
learning [98, 99, 131], one relies on a coordinator-clients architecture. Each device
(client) computes an update of the current global model based on its local data and
sends it to the server (coordinator), which aggregates the updates in a way that
tries to correct for discrepancies in the local datasets, and broadcasts the result back
to the clients. In practice, the dependence on the coordinator creates a single point
of failure as well as a communication bottleneck when the number of clients is large
[119]. Decentralized learning aims to fix this problem by removing the coordinator
and relying only on local peer-to-peer exchanges [45, 57, 119, 142, 180, 202, 224].
In both federated and decentralized learning, achieving low communication is key
to the practical efficiency of the algorithms (especially when running on small
devices), and a lot of effort has been dedicated towards reducing the communication
complexity while preserving accuracy [99, 177, 181, 226].

1See for instance React.js.
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4.1.2 Learning Personalized Models

Another promising and complementary direction to further account for the differ-
ences in the users’ datasets is to learn personalized models instead of assuming
that there exists a single global model which is accurate for all users. The hope
is to be able to improve the user experience by modeling its specific taste and
data distribution. The decentralized architecture is particularly suited for learning
personalized models: it allows us to extract reliable learners without gathering
sensitive data on a single server, reducing the risks of data leakage; it can be easily
powered with privacy-preserving protocols; it can be deployed for learning a personal
model per network node, instead of a unique global one. Moreover, if the network
of nodes is constructed making its topology reflect the similarities between users,
the personalized models can be optimized in a collaborative way, taking advantage
of information coming from similar users. This has been explored both in federated
[171] and decentralized [14, 191] settings by regularizing personalized models to be
close for “similar” users so as to improve generalization (in particular for users with
small datasets). Note that choosing appropriate similarity scores between users is
often difficult, especially in the decentralized setting. Another limitation of the
above personalized approaches is that they consider only linear models, and it is
not clear how to extend them to nonlinear models while retaining their convergence
properties.

4.2 Related work

In this section, we discuss in more details the two lines of previous works that are
most closely related to our approach, namely distributed boosting and distributed
training of personalized models.

Distributed Boosting. As highlighted in Chapter 2, boosting methods are
principled and powerful ways to construct a nonlinear classifier by adaptively
combining base functions. Several distributed versions of Adaboost have been
proposed to tackle the setting where data is partitioned across a set of machines
[47, 110, 200]. The work of [110] proposes to select base hypotheses on each machine
independently and to combine them at each round using a voting scheme. Improved
algorithms that are less prone to overfitting the dataset of a single machine have
been recently introduced by [47]. Like in our approach, the method of [200] operates
on a general graph and exchanges information across neighbors, but assumes that
agents can subsample from a global dataset and the main goal is to provide more
robust solutions by combining solutions trained on bootstrap samples. There has
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also been some work on distributed Frank-Wolfe algorithms which can be used to
solve the l1-Adaboost problem. The approach of [18] is communication-efficient
but can only be applied to the case where base functions (not data points) are
distributed across machines, while [108] is based on averaging gradients and is hence
communication-intensive for boosting with many base functions. All the above
approaches learn a single global classifier, while we focus on learning personalized
models.

In [172], the authors propose an approach to learn personalized classifiers with
boosting for activity classification in microblogs. The network graph is given by a
social network, and the model of each user is regularized to make similar predictions
to that of its neighbors. Their approach has several drawbacks compared to ours.
First, agents need to share their personal dataset with their neighbors, which can be
costly in terms of communication and may be undesirable due to privacy concerns.
Second, the convergence of their procedure is only to a local optimum, without an
established rate. Finally, they assume the availability of a relevant social network
graph.

Distributed Learning of Personalized Models. Distributed Multi-Task
Learning (MTL) has been considered in several recent works [12, 117, 196, 197],
but these typically consider a small number of tasks with well-balanced data across
tasks, and often focus on learning linear models. Recent work on federated and
decentralized learning algorithms [14, 171, 191] has demonstrated how fostering
model smoothness for similar tasks increases the generalization performance in
the presence of dataset imbalance across tasks. The federated learning approach
[171] learns personalized models as well as the collaboration affinities by alternating
between a local step where agents optimize their own model and an aggregation step
where the similarities between tasks are updated based on the current personalized
models. However, it is limited to linear models and relies on a coordinator node.
In contrast, [14, 191] operate in the decentralized setting and propose algorithms
based on the Alternating Direction Method of Multipliers (ADMM) [31] and block
coordinate descent which can scale to many agents. The high-level idea is to alter-
nate between local model updates and weighted model averaging with neighbors.
They however assume that the collaboration graph is known a priori. It is worth
noting that all these approaches have a communication cost per iteration which
scales linearly with the number of model parameters (which corresponds to the data
dimension for linear models). In contrast to the previous work, our approach is able
to learn nonlinear models which can capture complex structure in the data with low
communication cost, while also learning the collaboration graph. We believe that
this combination of features greatly improves the applicability of the framework.
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4.3 Decentralized Frank-Wolfe boosting for
learning personalized models

In this chapter, we propose a decentralized method for optimizing personalized
nonlinear models for classification with low communication cost. We first introduce
a novel problem formulation based on l1-Adaboost [68, 168], which allows to
build nonlinear classifiers as combinations of a set of base functions. We achieve
collaboration and personalization by introducing a trade-off between (i) making the
model of an agent accurate on its local dataset, and (ii) selecting base functions
that are popular among the agent’s neighbors.

We then propose a decentralized optimization algorithm based on the Frank-Wolfe
algorithm [65], building upon the work of [195] for boosting a global model in the
centralized setting. At each iteration, a random agent wakes up and greedily updates
its personalized model by incorporating a single base function at a time. The sparsity
of these updates enables very low communication costs (logarithmic in the number of
base functions). Finally, as designing an appropriate collaboration network topology
is difficult and often requires side information about the application of interest, we
propose a strategy to learn this topology along with the personalized classifiers
through an alternating optimization scheme.

4.3.1 Notations

We consider a set of K agents, each with a different binary classification task. Each
agent k holds its own labeled dataset Sk of size mk. For convenience, we denote the
total number of samples by m =

∑K
k=1mk and the union of the local datasets by

S = ∪Kk=1Sk = {(xi, yi)}mi=1, where observations xi ∈ X ⊂ Rd are associated with
a binary label yi ∈ {−1, 1}.

All agents have local access to the same set of n real-valued base functions H = {hj :
X → R}nj=1. Each agent k aims at learning a binary classifier in the form of a linear
combination of the base functions in H, i.e. a mapping x 7→ sign[∑n

j=1(αk)jhj(x)]

parameterized by a weight vector αk ∈ Rn. We will denote by A ∈ Rm×n the
matrix whose entry aij = yihj(xi) gives the margin achieved by the base classifier
hj ∈ H for the training sample (xi, yi) ∈ S. We will also use Ak ∈ Rmk×n to denote
the margin matrix restricted to the samples in the dataset Sk of agent k, so that for
i ∈ [mk], (Akαk)i = yi

∑n
j=1(αk)jhj(xi) gives the margin achieved by the classifier

αk on the i-th data point in Sk.

Instead of learning their classifiers on their own, agents will collaborate to learn
better classifiers by exchanging information over a network represented by an
undirected and weighted graph G = (V ,E). Each edge weight Wkl reflects the
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similarity of the tasks associated with users k and l (Wkl = Wlk), with Wkl = 0
for (vk, vl) /∈ E. We indicate by Dk =

∑K
l=1Wkl the degree of node k. In the rest

of this section, we will consider these similarity weights to be given (we show in
Section 4.5 how to learn them together with the classifiers). To ensure the scalability
of our algorithms to a large number of agents, we will favor local communication
schemes, i.e. each agent k will only need to send messages to its direct neighbors
Nk = {l : (vk, vl) ∈ E} in the network, which will typically be a small set compared
to the number of nodes K.

As agents have datasets of different sizes, we introduce a confidence value ck ∈ R+

for each agent k which should be thought of as proportional to mk. This confidence
score can be set for instance as ck = mk

maxlml
.

4.3.2 Graph Regularization Formulation

We now introduce our formulation as a joint optimization problem over the classi-
fiers α1, . . . ,αK . It is essentially a personalized version of l1-Adaboost [168] with
additional graph regularization, and can be written as follows:

min
‖α1‖1≤β,...,‖αK‖1≤β

f(α1, . . . ,αK) =
K∑
k=1

Dkck log
(mk∑
i=1

exp (−(Akαk)i)
)

+
µ

2

K∑
k=1

k−1∑
l=1

Wkl‖αk − αl‖2. (4.1)

The objective function in (4.1) is composed of two terms. The first one is a sum of
Adaboost logistic loss functions (one per agent), involving only their personal model
and their local dataset. Only optimizing this first term would amount to having
each agent k learn its classifier αk in isolation by minimizing the loss on its local
dataset. The second term is a graph regularization term that enables collaboration
by encouraging each agent k to select the same weak classifiers as its neighbor
l ∈ Nk when the edge weights Wkl are large. Notice that the confidence weight
ck in the first term adjusts the trade-off between these two terms differently for
each agent depending on how much local data the agent holds (Dk has a strictly
normalization role). The parameter µ is used to globally balance the two terms and
β bounds the l1 norm of the learned models.

Note that Problem (4.1) is convex. In particular, the objective function is convex
and continuously differentiable, and the feasible domain is a compact and convex
subset of (Rn)K that we will denote byM.
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4.3.3 Decentralized Frank-Wolfe Algorithm

In this section, we propose an algorithm to solve (4.1) in the decentralized setting.
This means that, in order to perform an update, an agent should only need to
send messages to its direct neighbors in the network graph G, which ensures that
the procedure scales well to large networks. As standard in the literature (see
for instance [33]), we consider that each agent k is equipped with a local clock
that ticks independently and follows a 1-Poisson distribution. This is equivalent to
considering a global clock (with counter t) which ticks each time one of the local
clock ticks. When the local clock of agent k ticks, it will update its local classifier
αk then broadcasts the update to its neighborhood Nk. We assume that agents
have access to the global counter t, hence some updates can occur in parallel in
different parts of the network.

Our algorithm is based on Frank-Wolfe (FW) [65, 89], which has recently been
applied to the l1-Adaboost problem in the centralized and non-personalized set-
tings [195]. The main idea of FW is to iteratively update the current solution
by moving towards the minimizer of the linearized objective over the feasible do-
main. Specifically, when applied to our problem formulation (4.1) and restricting
our attention to the model αk of agent k, a Frank-Wolfe update takes the form
αk ← (1− γ)αk + γsk where γ ∈ [0, 1] is the step size,

sk = arg min
‖s‖1≤β

〈s, gk〉, (4.2)

and gk = ∇kf(α1, . . . ,αK) ∈ Rn is the gradient at the current solution restricted
to the k-th block of coordinates (corresponding to the model of agent k). Note
incidentally that the FW update takes the form of a convex combination of two
feasible points, hence the updated model remains feasible

(∥∥∥αk∥∥∥1
≤ β

)
.

It is well known that a solution of (4.2) is given by β sign(−(gk)jk)ejk where
jk = arg maxj(|gk|)j and ejk is the unit vector with 1 in the jk-th entry. In other
words, FW updates a single coordinate of the current model αk which corresponds
to the maximum absolute value entry of the gradient gk. For Problem (4.1), the
gradient is given by

gk = −Dkckw
T
k Ak + µ

Dkαk −
∑
l

Wklαl

 , with wk =
exp(−Akαk)∑mk
i=1 exp(−Akαk)i

.

(4.3)
The first term in gk plays the same role as in standard Adaboost: the j-th entry
(corresponding to the base classifier hj) is larger when hj achieves a large margin on
the training sample Sk reweighted by wk (points that are currently poorly classified
get more weight). On the other hand, the more hj is used by the neighbors of k,
the larger the j-th entry of the second term. By applying the FW update (4.2),
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Algorithm 1: Decentralized Frank-Wolfe Graph Regularized Boosting
Input: A,S
Initialize α(0)k s.t.

∥∥∥α(0)k ∥∥∥
1
≤ β for all k ∈ [K]

for t = 1 to T do
γ(t) = 2K

t+2K
pick k uniformly from [1 . . . K]

wk =
exp(−Akα

(t−1)
k )∑mk

i=1 exp(−Akα
(t−1)
k )i

g
(t)
k = ∇kf(α

(t−1)
1 , . . . ,α(t−1)

K )

j
(t)
k = arg maxj(|g

(t)
k |)j

s
(t)
k = β sign(−(g(t)k )j)e

j
(t)
k

α
(t)
k = (1− γ(t))α(t−1)

k + γ(t) s
(t)
k

end for

we are able to preserve the flavor of boosting (incorporating a single base function
at a time which performs well on the reweighted sample) with an additional bias
towards the selection of base classifiers which are popular among neighbors. Note
that the relative importance of the two terms depends on the agent confidence ck.

Building upon the above ideas, we propose a decentralized algorithm to solve
Problem (4.1), see Algorithm 1. All classifiers are initialized to some arbitrary
feasible point (such as the zero vector). At each iteration (corresponding to a
tick of one of the local clocks), a single agent becomes active and performs a FW
update on its local model based on its local dataset and the current models of its
neighbors. This corresponds to optimizing at each iteration a randomly picked
block αk (drawn uniformly) of the whole set of parameters, as done in [106]. After
the update, the agent broadcasts its new model to its neighbors. Thanks to the
sparsity of the FW updates, we will see in Section 4.4.2 that this can be done with
very low communication cost.

4.4 Analysis

4.4.1 Convergence Analysis

The convergence analysis of our algorithm follows the proof technique proposed
by Jaggi in [89] and refined by [106] for the case of block coordinate Frank-Wolfe.
We start by introducing some useful notations related to our problem (4.1) and
by defining key quantities for the analysis. For any k = 1, . . . ,K, we let Mk =

{αk ∈ Rn :
∥∥∥αk∥∥∥1

≤ β} and denote byM =M1 × · · · ×MK our feasible domain
in (4.1). For convenience, we will use α = [α1, . . . ,αK ] ∈ (Rn)K to denote the
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concatenation of the parameters of local classifiers {αk}Kk=1 and refer to the objective
function (4.1) as f(α). We also denote by v[k] ∈M the zero-padding of any vector
vk ∈ Mk. Finally, for conciseness of notations, for a given γ ∈ [0, 1] we use α̂ to
denote α+ γ(s[k] − α[k]) and α̂k to denote (1− γ)αk + γsk.

In [89], the authors show that the dual gap defined as

gap(α) = max
s∈M
〈α− s,∇(f(α))〉

=
K∑
k=1

gapk(αk) =
K∑
k=1

max
sk∈Mk

〈
αk − sk,∇kf(α)

〉
(4.4)

can serve as a certificate of the quality of a current approximation of the optimum
of the objective function. In particular, one can show that f(α)− f(α∗) ≤ gap(α)
where α∗ is a solution of (4.1). The convergence of Frank-Wolfe is then established
by showing that the surrogate gap cannot stay large over many iterations, because
at a given iteration t of Algorithm 1 the block-wise surrogate gap at the current
solution gapk(α

(t)
k ) is minimized by the greedy update s(t)k ∈Mk.

To prove the convergence, the objective function needs to satisfy a form of smoothness
expressed by a notion of curvature. More precisely, the global product curvature
constant C⊗f of f over M is the sum over each block of the maximum relative
deviation of f from its linear approximations over the block [106]:

C⊗f =
K∑
k=1

Ckf =
K∑
k=1

sup
α∈M,sk∈Mk

γ∈[0,1]

2
γ2 (f(α̂)− f(α)− 〈α̂k − αk,∇kf(α)〉) . (4.5)

Each partial curvature constant Ckf is upper bounded by the (block) Lipschitz
constant of the partial gradient ∇kf(α) times the squared diameter of the block
Mk [106]. The next lemma gives a bound on the product space curvature C⊗f .

Lemma 4.1 For Problem (4.1), we have C⊗f ≤ 4β2∑K
k=1

(
Dkck

∥∥∥Ak∥∥∥2
1
+ µDk

)
.

Proof. See Appendix D.

We now prove the convergence of Algorithm 1.

Theorem 4.1 Algorithm 1 takes at most
6K(C⊗f +p0)

ε iterations to find an approximation
of the optimum of problem (4.1) that satisfies f(α)− f∗ ≤ ε, where p0 = f(α(0))−
f∗ is the initial sub-optimality gap.

Proof. Using the definition of the curvature (4.5) and rewriting α̂k−αk as −γk(αk−
sk), we obtain

f(α̂) ≤ f(α)− γ
〈
αk − sk,∇kf(α)

〉
+ γ2C

k
f

2 .
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In particular, at any iteration t, the previous inequality holds for γ = γ(t) = 2K
t+2K ,

α(t+1) = α(t) + γ(t)(s
(t+1)
k − α(t+1)

k ) with s
(t+1)
k = arg mins∈Mk〈s,∇kf(α(t))〉 as

defined in Algorithm 1. Therefore, 〈αk − sk,∇kf(α)〉 is by definition the gap
gapk(αk) and

f
(
α(t+1)

)
≤ f

(
α(t)

)
− γ(t)gapk

(
α
(t)
k

)
+
(
γ(t)

)2 Ckf
2 .

By taking the expectation over the random choice of k ∼ U(1,K) on both sides,
we obtain

Ek

(
f
(
α(t+1)

))
≤ Ek

(
f
(
α(t)

))
− γ(t)Ek

(
gapk(α

(t)
k )

)
+

(
γ(t)

)2
Ek

(
Ckf

)
2

≤ Ek

(
f
(
α(t)

))
− γ(t)gap(α(t))

K
+

(
γ(t)

)2
C⊗f

2K . (4.6)

Let us define the sub-optimality gap p(α) = f(α)− f∗ with f∗ the optimal value
of f . By subtracting f∗ from both sides in (4.6), we obtain

Ek

(
p
(
α(t+1)

))
≤ Ek

(
p
(
α(t)

))
− γ(t)

K
Ek

(
p
(
α(t)

))
+
(
γ(t)

)2 C⊗f
2K (4.7)

≤
(

1− γ(t)

K

)
Ek

(
p
(
α(t)

))
+
(
γ(t)

)2 C⊗f
2K . (4.8)

Inequality (4.7) comes from the definition of the surrogate gap (4.4) which ensures
that Ek (p(α)) ≤ gap(α).

Therefore, we can show by induction that the expected sub-optimality gap satisfies
Ek

(
p(α(t+1))

)
≤

2K(C⊗f +p0)

t+2K , with p0 = p
(
α(0)

)
as the initial gap. This shows that

the expected sub-optimality gap Ek (p(α)) decreases with the number of iterations
with a rate O(1

t ), which implies the convergence of our algorithm to the optimal
solution. The final convergence rate can then be obtained by the same proof as
[106] (Appendix C.3 therein).

4.4.2 Communication and Memory Costs

We study the communication and memory costs of our algorithm for a generic graph
G = (V ,E) with K nodes and M edges. The following analysis stands for systems
without failure (all sent messages are assumed to be correctly received). We express
all the costs in number of bits, using Z to denote the bit length that is needed to
represent a floating point number.
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Memory Each agent needs to store its current model, a copy of its neighbors’
models, and the similarity weights associated with its neighbors. Denoting by
(#Nk) the number of neighbors of agent k, its memory cost is given by

Z (n+ (#Nk)(n+ 1)) ,

which leads to a total cost for the network of

KZ

n+ K∑
k=1

(#Nk)(n+ 1)
 = Z (Kn+ 2M(n+ 1)) .

The total memory is thus linear w.r.t. the number of edges M , the number of agents
K and the number n of base classifiers.

Thanks to the sparsity of the updates of Algorithm 1, the dependency on n can
be reduced from linear to logarithmic by representing models as sparse vectors.
Specifically, when initializing the models to zero vectors, the model of an agent k
who has performed tk updates so far contains at most tk nonzero elements and can
be represented using tk(Z + log n) bits: tkZ for the nonzero values and tk log n for
their indices.

Communication At each iteration, an agent k updates a single coordinate of its
model αk. Hence, it is enough to send to the neighbors only the index of the modified
coordinate and its new value (or equivalently the index and the step size γ(t)k ).
Therefore, the communication cost of a single iteration is equal to (Z+ log n)(#Nk).
This is in contrast to previous federated/decentralized approaches for learning
personalized models: for these methods, the communication cost per iteration scales
linearly with the number of parameters of the model.

After T iterations, the expected total communication cost is equal to

T (Z + log n)Ek∼U(1,K) (#Nk) =
2TM
K

(
Z + log n

)
.

Combining this with Theorem 4.1, the communication cost needed to obtain an
approximation error smaller than ε is

12M(Cf + h0)

ε

(
Z + log n

)
.

4.5 Learning the collaboration graph

Until now, we have assumed that the graph topology G = (V ,E) and the weight
matrixW describing the affinities between users were given. In practical applications,



4.5. Learning the collaboration graph 87

W might be computed based on side information about the users (such as user
profiles), but this is not always available or reliable. We propose an alternative
strategy based on jointly optimizing a modified version of our problem (4.1) over α
and W . In order to keep the algorithm decentralized and the communication costs
low, we seek to learn a sparse graph. We note that the strategy proposed below
can also be applied to the decentralized algorithms of [14, 191], which learn linear
personalized models.

Notice that the graph regularization term (4.1) can be expressed as the trace of a
quadratic form of the graph Laplacian matrix :

K∑
k=1

k−1∑
l=1

Wkl‖αk − αl‖2 = tr(αLαT )

where L = D−W is the graph Laplacian and D the diagonal matrix of node degrees.
Given a fixed D and some integer q ≥ 1, we formulate the joint optimization problem
as follows:

min
α,W

K∑
k=1

Dkkck log
(

1
mk

mk∑
i=1

exp (−(Akαk)i)
)
+
µ

2 tr(α(D−W )αT )

s.t.

 W ≥ 0, W> = W , ∀l, k ∈ [K] : Wkl ≤ Dkk
q

∀ k ∈ [K] :
∥∥∥αk∥∥∥1

≤ β, ∑K
l=1Wkl = Dkk .

(4.9)

Observe that under the constraints in (4.9), the matrix L = D −W is a proper
graph Laplacian matrix and is thus positive semi-definite. In practice, we fix D = I

and solve (4.9) by optimizing alternatingy with respect to α andW , each of which is
a convex subproblem. In the optimization overW , the constraint that allWkl ≥ 1/q
ensures that each agent is assigned at least q neighbors. As the objective function
tr(α(D−W )αT ) is linear in W , agents will tend to have exactly q neighbors with
weights 1/q, hence the learned graph can be understood as a q-regular graph.

All agents need to convene to jointly find the new weights. As this is a rather
costly step, we perform this weight update only every tw iterations of minimization
over α. Hence we modify Algorithm 1 consequently. Every tw iterations, all agents
broadcast their model to all other agents and compute the new weights W locally.
Then, given the new weights, the algorithm continues with the same Frank-Wolfe
step size so as to avoid retraining the models from scratch.

This alternating optimization procedure is only guaranteed to converge to a local
optimum of (4.9), hence initialization is important. For this reason, we initialize
the weight matrix W (0) to the solution of (4.9) with α fixed to the purely local
models (optimized independently on each agent). We, then, optimize (4.9) with
respect to α given W (0) (starting from zero vector models) so that agents have
sufficiently relevant neighbors right from the start.
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4.6 Experiments

In this section we study the practical behavior of our method2 and compare it to
some baselines and state-of-the-art decentralized algorithms in terms of classification
accuracy.

Synthetic dataset. To show the relevance of learning nonlinear models, we
experiment with a synthetic dataset constructed from the classic two interleaving
moons dataset. Inspired by [191], we construct a graph of K agents and randomly
draw for each agent a rotation axis (coplanar to the Moons’ points) from a Normal
distribution. We generate the local datasets by drawing a random set of points
(uniformly between 3 and 20) from the two Moons distribution for training and
100 for testing, while applying the random rotation to all points. We further add
random label noise by flipping the labels of 5% of the training data.

We build a ground-truth collaboration graph where the similarities between agents
are computed from the angle θij between the agents’ rotation axes, using Wij =

exp
(

cos(θij)−1
σ

)
with σ = 0.1. We drop all the edges with negligible weights. In

order to increase the difficulty of the classification problems, all the points are
embedded in RD by adding random values for the D− 2 empty axes. D is fixed to
20 in the experiments.

Figure 4.2 – Illustration of the datasets of three users i, j, l. Each of them is rotated
according to a rotation axis and the angle between users’ rotation axes is retained to fix
the ground-truth similarity. In this example, a larger similarity score is affected to the
pair of users i, j than to i, l.

Competitors We compare our algorithm (called Dada for Decentralized Ad-
aboost) with several competitors which learn either global or personalized models,
in either a centralized or a decentralized manner. We consider the following l1-
Adaboost variants. Global l1-Adaboost consists in learning a single global model

2Source code available at https://github.com/vzantedeschi/Dada

https://github.com/vzantedeschi/Dada
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Figure 4.3 – The objective value for Dada w.r.t. number of iterations.

over the joint dataset S through FW optimization. Purely local models inde-
pendently learn K local models, through FW optimization over each local dataset.
This algorithm learns personalized models, but without any collaboration between
agents. Global-local mixture (inspired by the multi-task regularization of [41])
jointly learns K local models plus a global model optimized on the unified dataset
S. The model associated with each node is then the sum of its purely local model
and the global model. These methods use the same set of base functions, namely
200 decision stumps uniformly split between all D dimensions and value intervals.

We also compare Dada to a decentralized method for collaboratively learning
personalized linear models (personalized linear) described in [191] which is based
on ADMM optimization [202]. This approach also relies on graph regularization.

In all the figures, we report the global accuracy and loss over all agents. Algorithms
that build purely local or purely global models are shown with a straight horizontal
line that corresponds to their value at convergence. We tune the hyper-parameters
with 3-fold cross validation on the training agent datasets3. We apply a grid-search
over the following set of values: β (l1 norm constraint), common to all methods
except for personalized linear, is searched for in {1, . . . , 104}. The parameters
µ of Dada and personalized linear are searched for in {10−3, . . . , 103}. The
models are initialized to zero vectors unless specified otherwise.

4.6.1 Comparison with Competitors

In this first experiment, we study the convergence and the prediction accuracy of
our method using the ground-truth collaboration graph. Figure 4.3 confirms that
our method converges. As expected and as predicted by the theory (Theorem 4.1),
the number of iterations needed to converge increases with the number of agents K.
This is compensated by the fact that more decentralized updates can be done in
parallel when the network is larger. Figure 4.4 shows the evolution of the training

3We observe that β = 10 and µ = 1 for all models.
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Figure 4.4 – Training and test accuracy w.r.t. number of iterations.

and test accuracy over the iterations. The results clearly show the gain in accuracy
provided by our method. Dada is successful in reducing the overfitting of the
purely local models, and yields higher test accuracy than both a global l1-Adaboost
model and personalized linear models.

4.6.2 Graph Discovery

In this second experiment, we learn the collaboration graph together with the
models instead of relying on the ground-truth. Figures 4.5-4.6 show the effect
of varying tw (the number of iterations after which we update the graph) and q
(number of neighbors). Overall, we see that our strategy to learn the collaboration
graph can effectively make up for not knowing the ground-truth similarities. In
particular, we are able to significantly outperform the purely local models in terms
of test accuracy for all settings. Our approach does not seem to be very sensitive to
tw, which confirms that the graph can be updated fairly rarely. The neighborhood
size q can be set to rather small values with negligible impact on the accuracy. This
is important as the scalability of our decentralized algorithm heavily depends on the
fact that each agent only needs to communicate with a small number of neighbors.

4.7 Conclusion

In this chapter, we illustrated a new decentralized technique for collaboratively
learning personalized models over a graph of users which is both effective and
communication efficient. We formulated the learning problem as an l1-Adaboost
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Figure 4.5 – Graph discovery evaluation with variable tw.
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Figure 4.6 – Graph discovery evaluation with variable q.

which jointly optimizes the overall empirical error and the smoothness between
users’ models, based on the graph topology. We made use of Frank-Wolfe technique
for optimization for its intrinsic sparsity which makes it suitable for collaborative
learning with low communication cost. As it might be hard to estimate the
similarities between users a priori, we additionally proposed to simultaneously
learn the local models and the graph topology through an alternating optimization
procedure. The theoretical analysis proves the convergence in expectation of Dada
and the empirical evaluation highlights how our method significantly reduces the
overfitting of the purely local models, and improves the test accuracy w.r.t. both a
global l1-Adaboost model and personalized linear models.
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We envision several promising research directions. To further enhance the applicabil-
ity of the proposed framework, we would like to extend our approach to (functional)
gradient boosting [71], where the set of base functions can be infinite. Frank-Wolfe
algorithms can also be used in this setting [195], but how to efficiently implement
graph regularization in infinite dimensions is an open question. Another promising
avenue for future work is to make the proposed algorithm differentially-private
[58]. As our algorithm communicates very little information, we believe that its
privacy-accuracy trade-off may be better than the one of the method proposed
in [14].
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Similarities
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5
Landmark SVM

This chapter is based on the publication

Valentina Zantedeschi, Rémi Emonet, and Marc Sebban. L 3-svms: Landmark-
based linear local support vector machines. In CAp, 2017.

Starting from this chapter, we make use of a set of points – namely landmarks –
spread over the input space to capture its local characteristics. We will explicitly
form a latent space by considering the similarities between the inputs and these
landmarks. The similarities will be captured either by kernel functions or by linear
approximations of them. Doing so, we drop the assumption that the peculiarities of
the distribution are constant for a given subset of the partition.

Because of their appealing properties, such as scalability to large training sets, we
still optimize linear models. However, instead of learning a local model per subset
of data, we train a unique learner for the entire sample on a latent space overall
suited to the task at hand. More precisely, we introduce a local adaptation to the
well-known Support Vector Machines (SVMs) method, that we name L3-SVMs.
The main challenge will be taking advantage of the discriminatory power of kernel
SVMs while making them scale to large datasets.

Simple and effective, our algorithm is also theoretically well-founded. Using the
framework of Uniform Stability, we show that our SVM formulation comes with
generalization guarantees on the true risk. The experiments based on the simplest
configuration of our model (i.e. landmarks randomly selected from the training set,
linear projection, linear kernel) show that L3-SVMs is very competitive w.r.t. the
state of the art and opens the door to new exciting lines of research.

This chapter is organized as follows: Section 5.1 gives an overview of the state of
the art techniques for scaling SVMs to datasets large in number of samples and
dimensionality; In Section 5.2 we present our method and analyze its computational
and memory complexity; Furthermore, in Section 5.3 we study its theoretical
guarantees using the framework of uniform stability; In Section 5.4 we finally carry
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out experiments first on synthetic datasets, in the aim of showing, and on real
ones.

5.1 Locally linear SVMs

One of the most famous and commonly used Machine Learning techniques for
classification are the Support Vector Machines (SVMs) [49]. This popularity is due
to their robustness, simplicity, efficiency (even in non linear scenarios by means of the
kernel trick) as well as their theoretical foundations via generalization guarantees.

Despite these nice properties, SVMs may face some drawbacks: as highlighted in
Chapter 2, kernel SVMs are known to be expensive in terms of time complexity
and memory usage when the number of training examples is large, both at training
and at test time. For training, the full Gram matrix needs to be evaluated (i.e.,
compute and store all pairwise training sample similarities). For testing, the time
complexity depends on the number of support vectors which typically grows linearly
with the number of training instances [174]. Therefore, kernel SVMs have been
shown not to scale well to very large data sets.

Over the years, several methods have been proposed to speed up SVMs, for in-
stance by reducing the size of the training set [7], or by making use of stochastic
optimization [27] or by solving an alternative formulation of the orginal SVM prob-
lem [90]. On the other hand, locally-linear learning approaches have been shown
to be the most appealing in terms of training time, testing time and accuracy. As
already mentioned in this manuscript, they are effective for data sets that present
multi-modalities and/or non-linearities because they are able to capture the local
characteristics of the space. They are also computationally efficient as they learn
only linear classifiers (for which efficient solvers exist) and, at test time, are indepen-
dent on the number of support vectors, because they give an explicit formulation of
the decision function. However, these strategies suffer from the typical drawbacks of
local learning approaches, such as over-fitting (see Chapter 2). We can distinguish
between two main families of local SVM approaches: the ones that locally learn
combinations of a set of learned linear SVMs as in [64, 107, 194], and those which
partition the input space and learn a local model per region [73, 80, 198].

Methods from the first category estimate local combinations of linear SVMs and
make the assumption that the input data is lying on a manifold along which
the linear classifier evolves smoothly. In [107], the manifold is approximated by
selecting some anchor points (using K-means) and learning one local model per
anchor point. Each training point is then expressed, using a local coding scheme,
as a linear combination of its closest anchor points. The local coding ensures that
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Figure 5.1 – Illustration of the proposed approach. L3-SVMs first partitions the input
space into K clusters (represented with 4 colors in the figures) and randomly selects
landmarks (7 circled points in (b)). All points are then projected on all landmarks (b7→c)
(µ(x, lp) the projection of a point x on the pth landmark). K locally linear models, each
with its own support vectors but in a common projection space induced by all landmarks,
are then learned by solving a joint problem (the separators are represented as colored lines
in (d)).

the prediction for each point is influenced by a limited number of models, thereby
making the learning efficient. A latent SVM formulation is used in [64] where the
authors follow the principle of [107] but extend it to a multi-class setting and replace
the local coding scheme by latent coordinates that are estimated jointly with the
parameters of the linear models.

Methods from the second family, such as clustered SVMs [80], first partition the
input space, typically using K-means, and then learn a linear model in each region.
A review of this family of approaches is reported in Chapter 2.

In this Chapter, we introduce a new local SVM method, called L3-SVMs, that
targets computational efficiency while having provable theoretical guarantees. Our
method clusters the input space, carries out dimensionality reduction by projecting
all points on selected landmarks, and learns interdependent linear combinations of
linear models (see Figure 5.1 for an illustration).

As such, our method lies in between the two families of local approaches presented
above without suffering from the aforementioned drawbacks. On one hand, the
proposed method can be seen as learning a linear model on a latent space (linear
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or not) induced by the set of landmarks that is common to all clusters. On the
other hand, it can be seen as clustering the input space and learning, in a projected
space, a set of interacting linear models.

Using the framework of the Uniform Stability [30], we prove that our algorithm is
stable w.r.t. changes in the training set allowing us to derive a tight generalization
bound on the true risk. It is worth noticing that our algorithm, which can be
interpreted as a generalization of the standard SVM formulation, is configurable
and offers many points for improvement: clustering algorithm, regularization terms,
landmark selection method, projection function, etc. While many variations can be
imagined, our early experiments surprisingly show that the “default” choices (K-
means clustering, random landmarks, linear projection) already yield an algorithm
that is competitive with the state of the art while extremely fast and scalable.

5.2 Soft-margin Landmark-based Linear Local
SVMs

In the next Section, we formally present L3-SVMs and analyze its complexity in
terms of memory and amount of computations. Our method consists in partitioning
the input space into K clusters and learning K corresponding (linear) models that
interact in a single optimization problem. The interactions come from a projection
on a set of landmarks L that is common for all clusters and from the formulation
of a unique linear problem with a single bias parameter. It is worth noting that
a standard SVM is a particular case of our approach for K = 1 and specifically
chosen landmarks.

5.2.1 Notations and Optimization Problem

Let X ⊆ Rd be the input space, Y = {−1, 1} the output space and {Rk}Kk=1 a
partition of X (learned, for instance, using K-Means). We consider a training
sample S = {zi = (xi, yi, ki)}mi=1 of m i.i.d. instances zi ∈ X ×Y × {1, ..,K} (such
that xi ∈ Rki) drawn from an unknown distribution D. Moreover, we denote
L = {lp}Lp=1 ∈ X

L, a set of L landmarks of the input space (e.g. selected randomly
from the training sample). The objective function of L3-SVMs is defined as follows:

F (f) =
1
2 ‖f‖

2 +
c

m

m∑
i=1

`(f , zi)

where `(f , z) = max(0, 1− yf(x, k)) is the hinge loss and f : X × {1, ..,K} → R

is the function
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f(x, k) =
L∑
p=1

θkpµ(x, lp) + b

that is used for prediction with: ŷ = sign(f(x, k)).

Note that θ ∈ RK×L is a matrix of weights expressing the influence of each landmark
p for a given cluster Rk. Doing so, we are supposing that the problem is linear
in the space created by both clusters and landmarks. Thus, we learn a vector of
weights per cluster but a unique offset b.

Another way to see our method is as learning a unique SVM classifier in a projected
space defined by the selected landmarks L and by a score function µ : X 2 → R

between points of the input space:

f(x, k) = θk.µL(x)
T + b

where µL(.) = [µ(., l1), ...,µ(., lL)] is a projection from the input space X to the
landmark space H ⊂ RL. The score function µ could be, for instance, the scalar
product µ(xi, lj) = xil

T
j or the RBF function µ(xi, lj) = exp

(
−‖xi−lj‖2

2σ2

)
. For

instance, for µ the dot product, the clusters allow us to capture the non-linearities
of the space while the landmarks help to control the size of the input space.
Additionally, projecting on the landmarks acts as a regularization: as the landmarks
are chosen without considering their class and the projection of an instance uses all
the landmarks and not only those belonging to its partition, the risk of over-fitting is
reduced. Therefore, unlike clustered SVMs [80], we don’t need to learn an additional
global model to regularize the local ones.

As previously mentioned, our method is a generalization of standard SVMs: it is
similar to SVMs when K = 1 and the set of landmarks L forms a basis of the input
space X , and fully equivalent if this basis is also orthonormal.

A Soft-Margin version of our optimization problem can be written as follows:

arg min
θ,b,ξ

1
2 ‖θ‖

2
F +

c

m

m∑
i=1

ξi

s.t. yi
(
θki.µL(xi)

T + b
)
≥ 1− ξi ∀i = 1..m

ξi ≥ 0 ∀i = 1..m

which boils down to maximizing the margin between the class hyperplanes while
minimizing the average classification error.

The previous problem is defined for the linear case but it can be easily rewritten
for kernel SVMs considering that there exists an unknown mapping φ from H to
J , a space with potentially infinite dimensions, such that φ(µL(xi))Tφ(µL(xj)) =
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Figure 5.2 – Variable dependencies for our model, L3-SVMs, where one SVM is learned
per cluster but the local models interact through a common bias and L, the set of landmarks.
A node represents a variable (or a set of) and a link show a direct dependency between
the variables, i.e., one variable is directly involved in the computation or the estimation
of the other.

kernel(µL(xi),µL(xj)). The kernelized problem can be solved using its dual La-
grangian formulation (see Appendix E). Notice that the advantages of locally learning
non-linear SVMs are limited, as our approach already captures non-linearity and has
lower complexity compared to kernel SVMs. Moreover, the dual formulation would
suffer from the same drawbacks of kernel SVMs. However, by solving the problem in
its dual form, we can also study the relation between the learned model and the sup-
port vectors. The parameters are computed as follows (with {za = (xa, ya, ka)}Ai=1
the set of A support vectors and αa the dual value of za):

θkp =
A∑

a=1|ka=k
αayaµ(xa, lp)

b =
1
A

A∑
a=1

(ya − θka.µL(xa))

which means that the weight θkp for a cluster k and a landmark lp depends on the
support vectors of that particular cluster and on their similarities with lp, while the
parameter b is computed using the global information obtained from all the support
vectors. Figure 5.2 gives a graphical illustration of the variable dependencies for
L3-SVMs (see Appendix E for a comparison with other local SVMs methods).

5.2.2 Computational Analysis

As previously mentioned, the main drawback of kernel SVMs is their inability to
scale to large datasets. As a matter of fact, their training complexity is cubic with



5.3. Theoretical results 101

the number of instances and their testing and memory complexities depend on the
number of support vectors which is O(m) [174].

The proposed approach, if solved in its primal (e.g. using [60]), has a complexity
close to linear SVMs while capturing non-linearities. In Table. 5.1, we compare L3-
SVMs with standard Linear-SVMs, Linear-SVMs applied on polynomial features of
second order (Poly-SVM) and RBF-SVMs in terms of training, testing and memory
(for storing the learned model) complexities. For L3-SVMs we consider the default
configuration (that is also used in the experiments of Sec. 5.4): clustering with
K-means, random selection of landmarks and projection with the dot product.

The training complexity of our method could also be improved by using recent
optimization techniques proved to reduce the training time, such as [7, 27].

Table 5.1 – Computational comparison, with K: the number of clusters (K � m), L:
the number of landmarks (O(d)), with d: the number of features, and m: the number of
training instances.

Training Time Testing Time Memory Usage
Linear-SVM O(dm) O(d) O(d)

Poly-SVM O(d2m) O(d2) O(d2)

RBF-SVM O(m3) O(dm) O(dm)

L3-SVMs O(KLm+ Ldm) O(Ld) O(KL+ Ld)

5.3 Theoretical results

In this section, we present a generalization bound on the true risk induced by our
algorithm using the theoretical framework of the Uniform Stability [30] presented
in Chapter 1. We will see that this theoretical analysis gives some insights about
the number of landmarks to select in practice.

5.3.1 L3-SVMs’s Uniform Stability

We briefly recall the notion of Uniform Stability. The idea of Uniform Stability is
to check if an algorithm produces similar solutions from datasets that are slightly
different. Let S be the original dataset and Si the set obtained after having replaced
the ith example of S by a new sample z′i drawn according to D. We will say that an
algorithm is uniformly stable if the difference between the loss suffered (on a new
instance) by the hypothesis f learned from S and the loss suffered by the hypothesis
f i learned from Si converges in O( 1

m).
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For the following analysis, we introduce a new notation that allows us to simplify
the derivations. We rewrite

f(x, k) = θ µL(x)
T

with θ = [θ0., ..., θk., ..., θK., b] and µL(x) = [0, ...,µL(x), 0, ..., 0, 1] (that implicitly
depends on k) both of size KL+ 1 and

F (f) =
1
2 ‖θ‖

2 +
c

m

m∑
i=1

max(0, 1− yi(θµL(xi)T )) (5.1)

To derive the theoretical guarantees, we make use of the property of σ-admissibility
enjoyed by the hinge loss. In order for the algorithm to be stable, it is necessary to
prove that, for a given point, the difference between its loss function evaluated for
any two possible hypotheses is bounded by the difference of hypotheses’ predictions,
scaled by a constant. Following [30], we know that the hinge loss is 1-admissible.

We can now present the main result about our algorithm L3-SVMs.

Theorem 5.1 L3-SVMs Uniform Stability Assuming that ∀x ∈ X , ‖x‖ ≤ c, L3-
SVMs has uniform stability cLM2

m , where M = max(c2, 1) if µ is the dot product
and M = 1 if µ uses the RBF kernel.

Proof. As `(f , z) is 1-admissible, ∀z = (x, y, k) ∈ Z,

∣∣∣`(f\i, z)− `(f , z)
∣∣∣ ≤ ∣∣∣f\i(x, k)− f(x, k)

∣∣∣ = |∆f(x, k)| (5.2)

with ∆f = f\i − f . By denoting ∆θ = θ\i − θ, we can derive, ∀z = (x, y, k) ∈ Z,

|∆f(x, k)| =
∣∣∣θ\iµL(x)T − θµL(x)T ∣∣∣

=
∣∣∣(θ\i − θ)µL(x)T ∣∣∣

≤
∥∥∥θ\i − θ∥∥∥

F
‖µL(x)‖ (5.3)

≤ ‖∆θ‖F ‖µL(x)‖
≤ ‖∆θ‖F

√
L ‖µL(x)‖∞ (5.4)

≤ ‖∆θ‖F
√
Lmax

l
(µ(x, l))

≤ ‖∆θ‖F
√
LM . (5.5)

Eq. (6.4) is due to the Cauchy-Swartz inequality, and Eq. (6.5) is because ‖µL(x)‖ ≤√
L ‖µL(x)‖∞ recalling that µL(x) ∈ R(1×L).
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The value of M depends on the chosen function µ. For instance, if µ is the dot
product, M = max(C2, 1) and if it uses the RBF kernel, M = 1.

From Lemma 21 of [30]:

2 ‖∆θ‖2F ≤
c

m
|∆f(xi, ki)| .

Then, by instantiating Eq. (6.6) with z = zi, we get

‖∆θ‖2F ≤
c

2m |∆f(xi, ki)| ≤
c

2m ‖∆θ‖F
√
LM

and as ‖∆θ‖F > 0, we obtain

‖∆θ‖F ≤
c

2m
√
LM .

So, from the previous bound on |∆f(x, k)|, we get

∀z = (x, y, k), |∆f(x, k)| ≤ ‖∆θ‖F
√
LM ≤ cLM2

2m

which, with Eq. (6.3) gives the cLM2

m uniform stability.

Note that the stability of the algorithm depends on the number of selected landmarks.
L3-SVMs is stable only if L� m, which is not a strict condition considering that,
in practice, we select L = O(n) landmarks (with n the size of the input space X )
and that, for learning in general, n� m. The choice of the number of landmarks
is, then, crucial. The landmarks needed for good predictions depends on the
distribution of the data. As a matter of fact, the diversity of the landmark set
allows to capture the modalities of the input data, so that the more complex is
the distribution of the data, the more diversified landmarks are required. On one
hand, a limited number of landmarks will be probably unable to represent the input
data, especially if they are chosen randomly. On the other hand, when the number
of landmarks is too high, the model is more likely to over-fit, as expressed by the
generalization bound that we derived, because the landmark set will probably adapt
too much to the training distribution.

5.3.2 Generalization bound

For the ease of reading, we report the formulation of the generic bound derived
using the framework of Uniform Stability.
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Theorem 5.2 [30] Let A be an algorithm with uniform stability 2β
m w.r.t. a loss ` such

that 0 ≤ `(f , z) ≤ E, ∀z ∈ Z. Then, for any i.i.d. sample S of size m and for any
δ ∈ (0, 1), with probability 1− δ:

RD(f) ≤ R̂S(f) +
2β
m

+
(
4β +E

)√ ln 1
δ

2m

where RD(f) is the true risk and R̂S(f) is the empirical risk on sample S.

Corollary 5.1 The generalization bound of L3-SVMs derived using the Uniform
Stability framework is as follows:

RD(f)≤R̂S(f) +
cLM2

m
+

(
2cLM2

m
+1+2c

√
LM

)√
ln 1

δ

2m .

Proof. For deriving the generalization bound, we need to prove that our loss ` is
bounded by a constant E when evaluated at the optimal solution of F (5.1). Let f
be the minimizer of F . We deduce that:

F (f) ≤ F (0)
1
2 ‖θ‖

2 +
c

m

m∑
i=1

max(0, 1− yi(θµL(xi)T )) ≤
1
2 ‖0‖

2 +
c

m

m∑
i=1

max(0, 1− yi(0µL(xi)T ))

1
2 ‖θ‖

2 ≤ c (5.6)

‖θ‖2 ≤ 2c

Eq. (6.8) is because ∀a, b, c ∈ R+, a+ b ≤ c implies that b ≤ c.

Thus,

`(f , z) = max(0, 1− yθµL(x)T )
≤ 1 +

∣∣∣θµL(x)T ∣∣∣
≤ 1 + ‖θ‖

∥∥∥µL(x)T ∥∥∥ (5.7)

≤ 1 + 2c
√
LM = E

Eq. (6.9) comes again from the Cauchy-Swartz inequality.
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5.4 Experimental results

In this section, we empirically study the behavior of L3-SVMs both on synthetic
and on real datasets, and for binary and multiclass classification. Specifically,
we study the impact of the number of clusters and the number of landmarks
on learning, we analyze two different methods for selecting the landmarks and
finally we compare our method to the state-of-the-art SVM based techniques. L3-
SVMs is implemented in Python using the liblinear [60] library and the multiclass
classification is performed through a one-vs-all procedure. The code is available at
https://github.com/vzantedeschi/L3SVMs.

5.4.1 Capturing the Non-Linearities

Here we study the influence of the number of clusters on learning. We compare the
performances of standard SVMs (linear or kernelized with a RBF kernel) with those
of L3-SVMs (using the inner product or the RBF projection function) on two
toy non-linearly separable distributions: the XOR distribution and the Swiss-roll
distribution. Remember that, for our method, even if the function µ used for
projecting the data is the RBF, the learned models are still linear and the learning
remains efficient.

For these experiments, we tune the hyper-parameters of each method by grid search
with the values {10−3, 10−2, 10−1, 1, 10, 100} in a 5-fold cross-validation procedure
and for the L3-SVMs, the number of landmarks is arbitrarily fixed to 10 which
are randomly selected from the training sample. The instances are clustered using
K-means. In Fig. 5.3 and 5.4, we draw the learned class separators, as well as the
training instances (according to their true label) and the support vectors marked
by a black dot. We report the training and test accuracies (on training and test
samples of same size) and the number of support vectors.

XOR distribution, Fig. 5.3 We generated a synthetic XOR distribution by
drawing instances uniformly over a 2D-space and assigning to each instance the
label +1 (resp. −1) if its coordinates have the same sign (resp. different signs). As
expected, the linear SVM is not able to separate the two classes, while the RBF
SVM captures the non-linearities of the space. We notice that the performances of
a L3-SVMs are comparable to the RBF SVM in terms of accuracy and number of
support vectors even with just 2 clusters and that with 4 clusters we achieve the
best results. Moreover the learned class regions are similar to the theoretical ones.

https://github.com/vzantedeschi/L3SVMs
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train accuracy = 0.645, test accuracy = 0.585
 nb support vectors = 397

Linear SVM

train accuracy = 0.995, test accuracy = 0.9725
 nb support vectors = 26

RBF SVM

train accuracy = 0.9925, test accuracy = 0.97375
 nb support vectors = 141

2 clusters, L3SVM w. dot product

train accuracy = 0.99, test accuracy = 0.965
 nb support vectors = 26

2 clusters, L3SVM w. RBF

train accuracy = 0.9925, test accuracy = 0.975
 nb support vectors = 14

4 clusters, L3SVM w. dot product

train accuracy = 0.995, test accuracy = 0.9725
 nb support vectors = 13

4 clusters, L3SVM w. RBF

Figure 5.3 – 2D-XOR distribution: 400 training instances. The two colors depict the
regions of the predicted classes, while the training instances are drawn according to their
true label using two different shapes. The support vectors marked by a black dot.

Swiss-roll distribution, Fig. 5.4 The problem consists in separating a Swiss-
roll distribution (the first class) from a uniform one (the second class). Unlike the
XOR distribution, in this case 2 clusters are not enough to capture the non-linearities
of the space, but with 100 clusters we obtain better performance than the ones of
kernel SVMs.

Notice that, in both experiments, as the number of clusters increases, the difference
in accuracy between a L3-SVMs with a very fast inner product and a L3-SVMs
with a RBF projection function is irrelevant. Our method is then able to capture
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the non-linearities of the space as well as a non-linear SVM. Note that the number
of clusters depends, above all, on the nature of the input space.

train accuracy = 0.575, test accuracy = 0.52375
 nb support vectors = 384

Linear SVM

train accuracy = 0.7425, test accuracy = 0.72125
 nb support vectors = 296

RBF SVM

train accuracy = 0.5875, test accuracy = 0.52375
 nb support vectors = 350

2 clusters, L3SVM w. dot product

train accuracy = 0.69, test accuracy = 0.6575
 nb support vectors = 300

2 clusters, L3SVM w. RBF

train accuracy = 0.8725, test accuracy = 0.82625
 nb support vectors = 217

100 clusters, L3SVM w. dot product

train accuracy = 0.905, test accuracy = 0.8525
 nb support vectors = 171

100 clusters, L3SVM w. RBF

Figure 5.4 – 2D-Swiss-roll distribution: 400 training instances, balanced classes. The two
colors depict the regions of the predicted classes, while the training instances are drawn
according to their true label using two different shapes. The support vectors marked by a
black dot.

5.4.2 Fixing the number of landmarks

The aim of the following experiment is to empirically study how the number of
landmarks impacts the test accuracy. To do so, we fix the number of clusters
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(a) Liver: 345 instances, 6 features
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(b) Heart-Statlog: 270 instances, 13 features.
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(c) Sonar: 209 instances, 60 features.
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(d) Ionosphere: 351 instances, 33 features.
Figure 5.5 – We report the results for a fixed number of clusters and increasing number of
landmarks. The black line in the pictures marks the size of the dataset.
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(c) Sonar: 209 instances, 60 features.
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(d) Ionosphere: 351 instances, 33 features.
Figure 5.6 – For 1 to 9 clusters we report the maximal mean accuracy obtained with all
possible values of L with a given number of clusters.

(between 1 and 9) and vary the number of landmarks from 1 to the size of the
training sample.

We compare the performances of standard SVMs (linear, linear on polynomial
features of second order or kernelized with RBF) with those of L3-SVMs (using a
linear or RBF projection) on three UCI datasets [120]. In Fig. 5.5 we draw the mean
testing accuracies of a 5-fold cross-validation procedure repeated 10 times. For all
the methods, at each iteration we tune the hyper-parameters by grid search with
the values {10−3, 10−2, 10−1, 1, 10, 100} with a 5-fold cross-validation procedure and
we cluster the instances using k-means.

Liver, Fig. 5.5a and 5.6a Already with 2 clusters, L3-SVMs achieves testing
accuracies similar to those of a kernelized SVM. Furthermore, our method has the
best results for 2 to 6 clusters. On the other hand, it seems that a L3-SVMs with
a RBF projection function is quite sensitive to overfitting. It is interesting to notice
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that, by fixing the number of clusters to 1, projecting on enough landmarks allows
us to obtain a latent space more suited to the task.

Heart-Statlog, Fig. 5.5b and 5.6b In this case, learning local models makes
the predictions worse than learning a global one. As a matter of fact, from the
comparison of an SVM and a Kernel SVM, it seems that the problem is linearly
separable and that learning a non-linear classifier does not improve the results.
Therefore, increasing the number of local models only makes them overfit.

Sonar, Fig. 5.5c and 5.6c Studying this dataset, which has more features than
the previous two, it seems that it is possible to select a number of landmarks smaller
than the dimensionality of the input space without deteriorating the results.

Ionosphere, Fig. 5.5d and 5.6d Unlike all previous datasets, the number of
clusters, in this task, seems to only slightly impact the performance of the final
model. Consequently, L3-SVMs with the dot product is incapable to attain the
results achieved by the RBF-SVM.

In conclusion, we claim that it is not interesting to have a number of landmarks
greater than the dimensionality of the input space and that reducing the number of
landmarks is not conceivable on datasets of small number of features. Moreover,
from Figure 5.6 we can evince that, when the number of landmarks is optimal, the
accuracy of L3-SVMs with a RBF projection is not improved by increasing the
number of clusters. On the contrary, most of the times the accuracy is degraded
by it. Finally, the performance of L3-SVMs with a RBF projection function, in
most cases, are close or even worse than those of L3-SVMs with a linear kernel,
probably because of overfitting. Therefore, in the following sections, we will restrict
our studies only to L3-SVMs with linear projection.

5.4.3 Dimensionality Reduction

The aim of this series of experiments is to study the impact of the chosen technique
for landmark selection on the performances of our method. We compare L3-SVMs
with a set of landmarks randomly selected from the training sample to L3-SVMs
with the landmarks as the principal components of the covariance matrix of the
training set (performing a PCA) on the MNIST dataset [115]. In Fig. 5.7, we
report the testing accuracies w.r.t. the number of landmarks L, as well as the time
needed for selecting the landmarks. The number of clusters is fixed to 100 and the
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Figure 5.7 – Comparison of the testing accuracies and selection times (in seconds) for two
methods of landmark selections: PCA and random selection. Notice that the difference in
accuracy is limited when L is bigger than 100, while the time complexity is significantly
lower using a random selection (around 0.020s).
Table 5.2 – Characteristics of Datasets

#training #testing #features #classes #models
SVMGUIDE1 3089 4000 4 2 100

IJCNN1 49990 91701 22 2 100
USPS 7291 2007 256 10 80
MNIST 60000 10000 784 10 90

parameter c is tuned by grid search by 5-fold cross-validation. The instances are
clustered using k-means.

We use the Principal Component Analysis of the scikit-learn package [155], which
implements the randomized SVD presented in [81]. Having denoted the number of
features by d and the number of instances by m, the complexity of this method is
at worst O(md log(d) + (m+ d)d2), when the rank of the training set is equal to
d. Compared to a random selection (O(L) as L� m), the PCA-based selection is
more expensive and it achieves better results only when L < 100.

These results suggest that, when L is small, it is interesting to select good landmarks
(by means of a PCA for instance) and it can be done in reasonable time. On the other
hand, when L is big enough, there is no need to force the variety and expressiveness
of the set of landmarks, and a random selection from the training sample already
allows us to have a good projection of the input space with little effort.

5.4.4 Comparison with the State of the Art

In this final series of experiments, we compare L3-SVMs with state-of-the-art
methods on the four datasets presented in Table 5.2 (with the features rescaled to
have a standard deviation of 1). In all experiments, we fix L to the dimension of
the input space, we select the landmarks randomly from the training sample and
we cluster using k-Means.
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Table 5.3 – Testing Accuracies on real datasets(%)

SVMGUIDE1 IJCNN1 USPS MNIST
RBF-SVM 96.53 97.08 94.07 96.62
Linear-SVM 95.38 89.68 91.72 91.8

CSVM 95.05 96.35 N/A N/A
LLSVM 94.08 92.93 75.69 88.65
ML3 96.68 97.73 93.22 97.04

L3-SVMs 95.73 95.74 92.12 95.05

Table 5.4 – Testing Accuracies (%) and Training Speedups w.r.t. RBF-SVM.

SVMGUIDE1 IJCNN1 USPS MNIST
RBF-SVM 96.53 1x 97.08 1x 94.07 1x 96.62 1x
Poly-SVM 96.35 2.1x 92.65 5.2x N/A N/A N/A N/A
Linear-SVM 95.38 9.8x 89.68 140.5x 91.72 30.6x 91.8 112.5x
CSVM 95.05 0.3x 96.35 45.2x N/A N/A N/A N/A
LLSVM 94.08 1.7x 92.93 16.8x 75.69 0.4x 88.65 1.9x
ML3 96.68 0.3x 97.73 5.9x 93.22 1.1x 97.04 2.1x
L3-SVMs 95.73 1.8x 95.74 7.4x 92.12 1.3x 95.05 9.8x

Table 5.4 reports the accuracy and running times for several methods: standard
SVMs using either a linear kernel, a second-order polynomial kernel or an RBF
kernel (using Liblinear or Libsvm [40]); Clustered SVM (CSVM) [80]; Locally Linear
SVM (LLSVM) [107]; ML3 SVM [64] and L3-SVMs. 1 The number of local models
is fixed and, if not differently specified in the respective papers (such as 8 nearest
neighbors for LLSVM and p = 1.5 for ML3), the hyper-parameters are tuned by
5-fold cross-validation.

We can note that for datasets with a large number of features (i.e. USPS, MNIST)
L3-SVMs is always more efficient in terms of training time than other methods
while keeping good accuracies. This is mainly due to the fact that, in L3-SVMs,
the latent space is induced by a simple linear projection on randomly selected
landmarks, while the other methods are often based on more sophisticated latent
spaces. When the number of features is rather small, all methods provide both good
accuracies and training time, except for LLSVM (especially on IJCNN1). Even
though the testing time is sometimes higher than the other methods, it can be
reduced by limiting the number of landmarks for the datasets with a lot of features,
as in the previous experiments we showed that, up to a limit, it does not affect the
results.

1The results of CSVM for the multi-class datasets are missing because it is implemented only
for binary classification.
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5.5 Conclusion

In this chapter, we introduced a new local learning algorithm named L3-SVMs. It
relies on a partitioning of the input space and on a projection of all points onto a set
of landmarks. Using the Uniform Stability framework, we showed that L3-SVMs
has theoretically generalization guarantees. The empirical evaluation highlights
that L3-SVMs is fast while being competitive with the state of the art. Moreover,
several experiments allowed us to gain insights into the relevancy of the elements of
the method, notably the type and number of landmarks, the number of clusters
and the choice of the kernel. In particular, we reached several conclusions:

1. the number of landmarks L can be upper bounded by the dimensionality d of
the original input space;

2. when the number of landmarks is consequent, the set L can be selected
randomly from the training sample without loss of accuracy;

3. partitioning the inputs into clusters is necessary while using linear projections,
such as the dot product, but it deteriorates performance while using non-linear
kernels, such as the RBF.

However, several avenues of research need to be explored yet. First, we can refine
many of the elements of L3-SVMs: the partitioning using K-means can be replaced
by other existing hard or soft clustering algorithms; the random landmark selection
procedure could be optimized, for example using methods like DSELECT [93]
and Stochastic Neighbor Compression [104], or using density estimation [123]. As
mentioned earlier, the method can also be sped up by using recent optimization
techniques proved to reduce the training complexity, such as [7, 27].

Even though the common landmarks act as a regularization of the local models, in
the experiments, an over-fitting phenomenon is observed when the number of clusters
is very large. The model could naturally accept explicit spatial regularization terms
to increase the spatial smoothness of the models across clusters, as done for C2LM
in Chapter 3.

Finally, the speed and linearity of L3-SVMs open the door to exciting perspectives,
such as an auto-context approach (stacking of projections): L3-SVMs could be
reapplied on the data after projecting it on the support vectors of the previous
level, and so on. Beyond stacking, work on a deep version of the algorithm is in
progress, where we learn in a joint optimization problem the intermediate layers of
projection.

In the next chapter, we will present an adaptation of L3-SVMs to multi-view
data, in which each instance is observed in multiple feature spaces, potentially
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heterogeneous. Due to the increased complexity of the data representation, in this
first work we will not partition the data (K = 1) and we will rely only on non-linear
kernels as projection functions in order to capture the idiosyncrasies of the input
spaces. We will show how this new version of L3-SVMs allows us to work in a
unified space for all views while keeping a low computational complexity.



6
Landmark SVM for Multi-View
Data

This chapter is based on the publication

Valentina Zantedeschi, Rémi Emonet, and Marc Sebban. Fast and provably
effective multi-view classification with landmark-based svm. In ECML PKDD,
2018.

In this last chapter of contributions, we introduce a fast and theoretically founded
method for learning landmark-based SVMs (L3-SVMs) in a multi-view classification
setting. In such scenario, the instances of the dataset are observed in multiple
feature spaces. We argue that the key to effectively tackling multi-view problems
is exploiting the diversity between views, as the different views rarely contain,
alone, sufficient information for the task at hand. The proposed method – named
MVL-SVM – leverages the complementary information of the different sources of
information and linearly scales with the size of the dataset.

The approach applies a non-linear projection to the dataset through multi-view
similarity estimates w.r.t. a set of selected landmarks, before learning a linear SVM
in the latent space joining all the views. In this new setting, both instances of the
sample and landmarks are observed in multiple feature spaces. We account for
this multifaceted representation in the similarities between points and landmarks:
a kernel needs to be selected per view and the similarities need to be computed
one view at a time (to compare a point to a landmark, the features on a view
are compared to the features of the landmark on the same view, so on and so
forth for all the views.). In the final step, by concatenating the obtained view-wise
representations of the sample, we manage to get a unique latent space, common to
all the views.

In the light of the empirical results of Chapter 5, the set of landmarks is selected
randomly from the training sample. Moreover, despite the effectiveness of coupling
the dot product with the data partitioning for capturing the data distribution, and

115
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in the aim of simplifying the formulation of the problem, which has been overloaded
by the increased complexity of the data representation, in the following work we
only rely on the choice of kernel for representing the characteristics of the space
and we do not perform any clustering of the data.

We prove the generalization capabilities of our algorithm using the the uniform
stability framework: we first analyze the robustness of the approach to slight changes
in the training set and, then, derive a tight generalization bound dependent on the
number of views and landmarks. In a second moment, we extend our method to
the missing-view scenario. Thanks to the formulation of our problem, we show that
we can reconstruct the missing views of the incomplete points simply by estimating
the similarities to the landmarks in the single views without approximating the
missing feature values. Empirical results, both in complete and missing view
settings, highlight the superior performances of our method, in terms of accuracy
and execution time, w.r.t. state of the art techniques.

The Chapter is structured as follows: In Section 6.1, we present the multi-view
setting, with its specificities and new challenges, and give a quick overview of
the solutions of the state of art; In Section 6.2, we present MVL-SVM and, in
Section 6.3, we derive its generalization guarantees in the form of an upper bound
on the true risk; In Section 6.4, we detail an extension of our approach to the
missing-view scenario; Finally, in Section 6.5, we carry out an empirical evaluation
of MVL-SVM, both in complete and missing settings.

6.1 Multi-view learning

Machine learning has mainly focused, during the past decades, on settings where
training data is embedded in a single feature set. However, data collected nowadays
is rarely of a single nature. It is rather observed in multiple, possibly heterogeneous
views, where each view can take the form of a different source of information.
Examples of multi-view datasets are documents translated in different languages,
corpora of pictures with descriptive captions, clips with both audio and video
streams, or simply objects observed with different visual conditions (e.g. viewpoint
and exposure) like in the recent works [42, 43].

Definition 6.1 (Multi-view data) An instance x is said to be multi-view if it lies in
multi-view space of V views {Wi ⊆ Rd

i }Vi=1, so that x ∈ X ⊆ Rd1+···+dV .

Dealing with such scenarios led to the development of the multi-view learning
setting [176, 208, 227] facing new challenges and requiring scientific breakthroughs.
Consider, for instance, the problem of detecting a neurological disorder from a
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series of brain images from which different brain parcellation atlases are extracted1.
Each atlas (or view) corresponds to a different parcellation of the 3D representation
of the brain (a functional MRI): regions of interest (ROIs) are highlighted on the
scanning that vary from a view to another. In neuroimaging data analysis, the
co-activations between these ROIs are extremely useful for detecting behavioral or
clinical patterns. Figure 6.1 gives an example of two atlases, which are represented
each by three 2D sections but are originally 3D. As the selected ROIs vary from
atlas to atlas, each parcellation captures different information on the brain activity
and it would be interesting to leverage the complementary information coming from
all atlases. However, typical machine learning algorithms hinder exploitation of
different sources of information.

x=0

L R

z=11

L R

y=-42

Harvard Oxford atlas

x=1

L R

z=25

L R

y=-14

Basc Multiscale 2015 atlas

Figure 6.1 – This figure shows two different views (here, atlases) of the brain at resting
state. Each view shows in color the detected regions of interest. (Atlases available in the
nilearn library http: // nilearn. github. io/ .)

Basically, the need for designing multi-view algorithms relies on the observation
that standard learning methods with good performance on single-view problems
are, in most cases, inefficient in a multi-view setting [61, 88, 182]. Indeed, the views
of an instance don’t necessarily stand-alone because they might individually carry
insufficient information about the task at hand. Even worse, they can be noisy
or missing for a part of the training set. Thus, learning a model jointly on the
ensemble of views has been proved to be more expressive than view-specific models,
because it exploits the possible complementarity between views [227].

A rich literature of methods has been proposed over the years to provide solutions
for extracting information from multiple sources. We can distinguish two principal

1A challenge has been organized in 2018 on the subject https://paris-saclay-cds.github.
io/autism_challenge/

http://nilearn.github.io/
https://paris-saclay-cds.github.io/autism_challenge/
https://paris-saclay-cds.github.io/autism_challenge/


118

families of approaches which address multi-view problems: those which optimize a
set of single-view learners and combine their predictions, and those which learn a
single model in a common space shared by all views. We now provide an overview
of the state of the art techniques for multi-view learning.

6.1.1 Multi-view Learning Algorithms

The simplest solution to tackle multi-view problems consists in working on the
concatenated space of views, i.e. treating each view as a subset of features. However,
as the nature of the views can be heterogeneous, i.e. their corresponding features
might lie in different input spaces, such a solution is often unfeasible. Moreover, it
does not take into account the statistical specificities of each view and can suffer
from the curse of dimensionality.

Common multi-view state of the art approaches learn a set of single-view models
either by co-training [26], in an attempt to capture both the commonalities and
idiosyncrasies of the views, or by co-regularization [61, 175] over the predictions,
aimed at maximizing their agreement (see [176, 208, 227] for surveys). Basically,
these techniques train multiple view-specific models either by alternatively optimiz-
ing them, “teaching” one another, or by fostering their smoothness in predictions.
The final step of such techniques consists in aggregating the predictions of the
view-specific classifiers, for instance by majority vote [61, 175] or by weighted
majority vote [78, 135]. Note that these methods usually face the following issues:
their performances are degraded by the computational overload of training and
testing multiple learners; also, by usually making the assumption that the views’
common information is the only one worth keeping, they boil down to denoising
the single views from their uncorrelated information. Yet, it is worth noticing that
the information relevant to the task is not necessarily the one the views share, but
the one that can be extracted by aggregating the views’ incomplete information.

A few techniques [88, 92, 134] have also been proposed suggesting to address the
problem in a unified space common to all views, allowing us to learn a single
model while exploiting the different sources of information. These methods utilize
a Vector-valued Kernel Hilbert Spaces (vvRKHS) [133], whose reproducing kernel
outputs, for a pair of multi-view points, a matrix of similarities, each component
weighting the similarity of the points observed in a pair of views. These methods
are extremely powerful, because they are able to keep the statistical specificities of
each view and to extract the complementary information from the diversity of the
sources. Of particular interest is Multi-view Metric Learning (MVML [88]) which
combines vvRKHS with Metric Learning [16, 212] and has proved to outperform
Kernel-based state of the art methods, such as Multiple Kernel Learning [75].
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MVML jointly learns a classifier and a kernel matrix encoding the within-view and
between-view relationships. Although the computations are sped up by working
on an approximated Gram matrix, obtained through the Nyström technique [206],
this powerful approach is not sufficiently competitive in terms of execution time.
However, this interesting idea faces a major issue: the cost required to extract
the complementary information usually results in algorithms nonetheless barely
competitive in terms of execution time.

To overcome the complexity burden of kernel-based methods, the approach L3-
SVMs presented in Chapter 5 for single-view classification is designed to take
advantage of the discriminatory capabilities of kernels while being fast and scalable.
Through clustering and projections on landmarks, this algorithm speeds up the
learning process while training expressive classifiers, competitive with Kernel-SVMs.
In this chapter, we aim at (i) benefiting from this promising landmarks-based SVM
paradigm, (ii) adapting it to the multi-view scenario and (iii) deriving theoretical
guarantees which take into account both the number of landmarks and views.

6.1.2 Missing View Imputation

Another open problem in multi-view learning is how to deal with realizations of the
points that are partially incomplete, i.e. some views of certain instances are missing.
In order to apply a multi-view algorithm, one might have to discard the points with
missing views, which may result in a loss of performance, or to complete them using
different techniques while trying not to introduce bias. Common practices consist
in replacing the missing values with zeros or with the mean or the median values of
the considered feature.

On the other hand, multi-view kernel specific techniques have been proposed to
complete the Gram matrices of incomplete views. By making the assumption
that similarities between points should be consistent from one view to another, the
missing values of a view’s Gram matrix are inferred by aligning its eigen-space to the
ones of the other views. This can be done by Graph Laplacian regularization [186]
(finding the matrix that minimizes its product with the Graph Laplacian matrix of
a complete reference view) or by learning convex combinations of normalized kernel
matrices [21]. The first limitation of such approaches comes from the fact that they
cannot be applied on non-square matrices. This prevents us from using them on
matrices containing the similarities to a subset of points, like in landmarks-based
SVM approaches. Beyond this constraint, the assumption that views are strongly
similar and the constraint of having the points altogether observed in a view seems
too strong.

Another multi-view imputation technique relies on the existence of view generating
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functions for approximating the missing values. For example, in [2], the authors
resort to translation functions for documents in multiple-languages. Unfortunately,
depending on the application at hand, such functions are not always available.

In Section 6.4, we make use of the information coming from a small set of randomly
selected landmarks to impute the missing values. As for Laplacian imputation [186],
we do not need to reconstruct the actual missing features of a point, but only its
similarities w.r.t. the landmarks, which drastically simplifies the problem. Through
Least Square minimization, we impute the missing similarities by learning the linear
combinations of the landmarks projected in the latent space.

6.2 Multi-View Landmark-based SVM (MVL-SVM)

Following the promising line of work of [88], in this Section we propose a new latent
space-based approach, called MVL-SVM, which leverages the complementary
information of the views and which is fast, scalable and provably effective. As
shown in Fig.6.2, we base our work on Support Vector Machines (SVMs) [49]. In
order to keep the time complexity and memory usage low, we formulate our problem
as a Linear SVM in a joint space created by comparing the instances, a view at a
time, to a small set of randomly selected landmarks, also observed in multiple views.
The instance/landmark comparison is carried out by means of similarity functions,
such as the RBF kernel, each defined on a view. Doing so, we solve a linearized
joint problem over all views, in which the statistical characteristics of the views are
recoded in similarity estimates with points spread over their spaces. Additionally,
by applying non-linear mappings, we efficiently capture the non-linearities and
multi-modalities of the view spaces while avoiding the drawbacks of kernel SVMs
(see [7, 27, 107, 174]). Such benefits would not be possible without projecting the
points on landmarks: the mapping ensures that the algorithm works on homogeneous
features and it also controls the dimensionality of the projected space.

Figure 6.2 – Overview of the proposed MVL-SVM method. From V views (3 here) of
possibly different nature, points are projected on randomly selected landmarks l1, · · · , lL
using view specific non-linear mappings µ1, · · · ,µV . Then, a linear separator is learned
in RLV , the joint space of projections.
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6.2.1 Notations and Problem Statement

We consider the problem of learning from a dataset S = {zi = (xi, yi)}mi=1 of m
instances i.i.d. according to a joint distribution D and observed in a multi-view
space of V views, so that xi ∈ X ⊆ Rd1+···+dV , in which views are potentially of
different dimensionality and nature, and yi ∈ Y = {−1, 1}. In the following, we will
use the notation [xi]v to refer to the realization of point xi in the view v. Moreover,
we denote L = {lp}Lp=1 ∈ X

L, a set of L landmarks of the input space selected
randomly from the training sample.

We aim at learning a classifier f : X → R in the joint space defined by the different
views as follows:

f(x) = θTµL(x) + b (6.1)

where θ ∈ RLV is a vector of weights, each associated to a view v of a landmark
p and µL(xi) = [µ1([xi]1, [l1]1), . . . ,µ1([xi]1, [lL]1), . . . ,µV ([xi]V , [lL]V )] can be
interpreted as the mapping function from the input space X to a new landmark
space H ⊆ RLV . The sign of the function is used for prediction (ŷ = sign(f(x))),
i.e. test examples need to be projected as well on the latent space. Notice that
each point is compared to the set of landmarks one view at a time and that the
problem is now linear in the space H. To capture the non-linearities of the space,
we rely on the choice of view-specific score functions µv : Rnv ×Rnv → R between
representations of points in a given view.

The choice of projecting the dataset on selected landmarks is crucial for the dis-
criminatory power of the resulting classifier. As a matter of fact, it enables to
express the statistical peculiarities of a view-space through similarity estimates and
additionally it allows us to work on a latent space common to all views, which
has multiple benefits: firstly, it allows to control the dimensionality of the space
by choosing the number of landmarks; secondly, it enables learning of a unique
classifier, avoiding the problem of combining the outputs of view-specific models;
lastly, and most importantly, it loosens the assumptions on the relationship between
view information, especially the one about their correlation.

6.2.2 Optimization Problem and Algorithm

As for standard SVMs, our objective function consists in maximizing the mar-
gin between the class hyperplanes while minimizing a surrogate function of the
classification error:
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Algorithm 2: MVL-SVM algorithm.
Input: a sample S = {zi = (xi, yi)}mi=1 ⊆ Rn1+···+nV × {−1, 1}
and a set of view-specific score functions {µv : Rnv ×Rnv → R}Vv=1
1. Select L = {lp}Lp=1 uniformly from {xi}mi=1;
2. Project S on the latent space:
for i = 1 to m do
µL(xi) = [µ1([xi]1, [l1]1), . . . ,µ1([xi]1, [lL]1), . . . ,µV ([xi]V , [lL]V )]

end for
3. Learn θ ∈ RLV as the minimizer of Problem (6.2.2);
4. Use sign(θTµL(x) + b) for prediction.

F (f) =
1
2 ‖f‖

2 +
c

m

m∑
i=1

`(f , zi) (6.2)

where `(f , z) = max(0, 1− yf(x)) is the hinge loss. We formulate the multi-view
classification problem as a soft-margin SVM learning that we solve in its primal
form:

arg min
θ,b,ξ

1
2 ‖θ‖

2 +
c

m

m∑
i=1

ξi

s.t. yi
(
θTµL(xi) + b

)
≥ 1− ξi ; ξi ≥ 0 ∀i = 1..m.

The main difference with a standard SVM is the working input space and its
interpretation. Basically, we learn how to linearly combine the point-landmark
similarities, describing how they should change over the views for a class. The
pseudo-code of MVL-SVM is reported in Algorithm 2.

To recapitulate, our landmark-induced latent space allows us to efficiently extract
the complementarity between views while capturing their statistical peculiari-
ties. Moreover, MVL-SVM’s flexibility makes it suited to deal with multiple
and not-necessarily correlated views, potentially heterogeneous and of different
dimensionality. This flexibility, combined with its scalability, makes MVL-SVM
applicable to a wide set of problems.

6.3 Theoretical results

Since the parameters θ and b are optimized from a finite set of training examples, a
key question is how the learned model behaves at test time. Using the theoretical
framework of the Uniform Stability [30] presented in Chapter 1, we analyze in this
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section the generalization properties of our algorithm by deriving an upper bound
on its true risk. We will see that the stability of our method and, consequently, its
generalization capabilities, depend on the choice of the projection functions, the
number of selected landmarks and the characteristic of the dataset, such as the
number of views and the size of the training set.

Here, we skip most of the notions common with the derivation of Chapter 5. We
invite the reader to refer to Chapter 1 and 5 for more details.

6.3.1 MVL-SVM’s Uniform Stability

Let S be the original dataset and S\i the set obtained after removing the ith sample
zi from S. We denote by f (resp. f\i) the optimal solution of (6.2.2) on S (resp.
S\i). Moreover, we recall that, as noted in [30], the hinge loss is 1-admissible.

Theorem 6.1 Uniform Stability Given the inverse regularizer weight c (from
Eq. (6.2.2)), MVL-SVM has uniform stability cLVM2

m , where M = 1 if µv uses
the RBF kernel ∀v.

Proof. As `(f , z) is 1-admissible, ∀z = (x, y) ∈ Z,

∣∣∣`(f\i, z)− `(f , z)
∣∣∣ ≤ ∣∣∣f\i(x)− f(x)∣∣∣ = |∆f(x)| (6.3)

with ∆f = f\i − f . By denoting ∆θ = θ\i − θ, we can derive, ∀z = (x, y) ∈ Z,

|∆f(x)| =
∣∣∣θ\iµL(x)T − θµL(x)T ∣∣∣

=
∣∣∣(θ\i − θ)µL(x)T ∣∣∣

≤
∥∥∥θ\i − θ∥∥∥ ‖µL(x)‖ (6.4)

≤ ‖∆θ‖ ‖µL(x)‖
≤ ‖∆θ‖

√
LV ‖µL(x)‖∞ (6.5)

≤ ‖∆θ‖
√
LV max

l,v
(µv([x]v, [l]v))

≤ ‖∆θ‖
√
LVM (6.6)

with M = maxl,v(µv([x]v, [l]v)).

Eq. (6.4) is due to the Cauchy-Swartz inequality and Eq. (6.5) is because ‖µL(x)‖ ≤√
LV ‖µL(x)‖∞ recalling that µL(x) ∈ RLV .

The value of M depends on the chosen score functions {µv}Vv=1. For instance, if
every µv is an RBF kernel, then M = 1.



124

From Lemma 21 of [30] we get:

2 ‖∆θ‖2 ≤ c

m
|∆f(xi)| .

Then, by instantiating Eq. (6.6) for x = xi, we get

‖∆θ‖2 ≤ c

2m |∆f(xi)| ≤
c

2m ‖∆θ‖
√
LVM

and as ‖∆θ‖ > 0, we obtain

‖∆θ‖ ≤ c

2m
√
LVM . (6.7)

Finally, plugging Eq. (6.7) in Eq. (6.6), we get

∀z = (x, y), |∆f(x)| ≤ ‖∆θ‖
√
LVM ≤ cLVM2

2m

which, with Eq. (6.3), gives the cLVM2

m uniform stability.

Note that the stability of MVL-SVM depends on the number of landmarks L.
Our method is stable only if L� m

V , which is not a strong condition considering
that usually m� V . Moreover, this bound expresses that, the smaller the L, the
more stable the algorithm. This is consistent with the fact that L controls the
dimensionality of the projected space in which the multi-view model is learned.

6.3.2 Generalization Bound

The following results applies for upper bounded losses, such that 0 ≤ `(f , z) ≤ E

with E ∈ R+.

Corollary 6.1 The generalization bound of MVL-SVM derived using the Uniform
Stability framework is as follows:

RD(f)≤R̂S(f) +
cLVM2

m
+
(
2cLVM2+1+2c

√
LVM

)√ ln 1
δ

2m .

Proof. The constant E can be estimated by considering the following:
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F (f) ≤ F (0)
1
2 ‖θ‖

2 +
c

m

m∑
i=1

max(0, 1−yi(θµL(xi)T )) ≤
1
2 ‖0‖

2 +
c

m

m∑
i=1

max(0, 1−yi(0µL(xi)T ))

1
2 ‖θ‖

2 ≤ c (6.8)

‖θ‖2 ≤ 2c

Eq. (6.8) is because ∀a, b, c ∈ R+, a+ b ≤ c implies that b ≤ c. Thus,

`(f , z) = max(0, 1− yθµL(x)T )
≤ 1 +

∣∣∣θµL(x)T ∣∣∣
≤ 1 + ‖θ‖ ‖µL(x)‖ (6.9)
≤ 1 + 2c

√
LVM = E

Eq. (6.9) comes again from the Cauchy-Swartz inequality.

The main difference with the bound of the previous chapter lies in the dependence
to the number of views V .

6.4 Learning with missing views

Up to this section, we have made the implicit assumption that all the instances
were observed in all the views. Because it is common in real-case scenarios that
some points are observed only in a subset of views, we now illustrate how to adapt
our formulation to this so-called missing-view setting.

The formulation from Eq. 6.2.2 is applicable only when all the points of the training
and test sets are observed in all the views. To extend our method to the context
of missing views, we apply a reconstruction step before learning. As we want to
preserve the scalability of our approach, we do not impute missing values in the
original input space: we rather design a dedicated method that imputes missing
values by directly leveraging the information coming from the set of landmarks.
We simply formulate our imputation as a Least Square estimation over the known
values as follows:

arg min
R

‖M −RP‖2F ′ (6.10)
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with M the m×LV matrix of projection values, P the L×LV matrix of projected
landmarks, R the unknown m×L reconstruction matrix and ‖.‖F ′ the Frobenius
norm considering only the non-missing values (in our case, the missing values are
those ofM). The problem from Eq. (6.10) boils down to learning linear combinations
of landmark similarities over all the views and, for this reason, all the views of the
landmarks need to be known. Doing so, we avoid estimating the actual missing
features and we directly impute the view-dependent similarities between points and
landmarks.

It is worth noting that each point projection is reconstructed independently and
that the system is always (over-)determined for each point, as at least one block of
size L of the point projection is known (at least one view’s features are given) and
the number of unknowns is L.

6.5 Experimental results

In this section, we report and analyze the performances of our method w.r.t. the
state of the art algorithms, in terms of both classification accuracy and training
and testing execution times. We perform two sets of experiments: (i) learning with
complete views and (ii) learning with missing views. We will specifically study
the behavior of MVL-SVM w.r.t. the number of landmarks keeping in mind that
the larger the number of landmarks, the better the discriminatory power of the
classifier, but the slower the learning process.

An implementation of our method, based on the Liblinear library [60], together
with the other existing algorithms (when the codes are open-source) is available at
https://github.com/vzantedeschi/multiviewLSVM.

6.5.1 Datasets, Methods and Experimental Setup

For these experiments, we employ two multi-class datasets that provide multi-view
representations of the instances:

• Flower17 2 contains 1360 pictures of 17 categories of flowers, which come with
7 different distance matrices between pictures (i.e. the 7 views);

• uWaveGesture [44] is formed by 4478 vectors describing 8 different gestures
as captured by 3 accelerometers (the 3 views).

In order to prove the significance of embedding the datasets in a single space, we
compare our technique to the methods that learn a single classifier on a latent

2http://www.robots.ox.ac.uk/$\sim$vgg/data/flowers/17/

https://github.com/vzantedeschi/multiviewLSVM
http://www.robots.ox.ac.uk/$\sim $vgg/data/flowers/17/
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space and to the methods that learn a set of single-views classifiers. Moreover,
we principally compare MVL-SVM to SVM-based approaches, to highlight the
interest of using landmark-mappings. Multi-class classification is carried-out through
the one-vs-all procedure.

We report the results of the following baselines:

• MVML [88] that optimizes over both the classifier and the metric matrix,
and which is designed to make the most of the between-view and within-view
relationships;

• the co-regularization technique SVM-2k [61], which regularizes over the
predictions enforcing their smoothness. Originally designed for 2 view learning,
we adapted this algorithm to work with V ≥ 2 views by learning a SVM-2k
for every pair of views and combining their predictions using a majority vote;

• SVMs which consists in learning a Kernel-SVM per view and aggregating
their predictions by majority vote.

All the previous methods, and ours, utilize the Radial Basis Function (RBF, squared
exponential) kernel for comparing the points, with a radius that is fixed and equals
to the square root of the number of features. We make use of the 3 train-validation-
test splits provided for Flower17, and of the train-test split for uWaveGesture, by
tuning with cross-validation over the training set. We repeat each experiment 5
times, reporting the average test value and its standard deviation when it is not
null. For MVL-SVM, at each iteration we randomly select a new set of landmarks
to underline how the chosen landmarks affect the expressiveness of the latent space.
We tune the hyper-parameters of the methods by grid-search over the following
set-values: for MVML, we evaluate λ ∈ {10−8, . . . , 10} and η ∈ {10−3, . . . , 102}, as
indicated in the original paper; for SVM-2K, we consider c1, c2 and d ∈ {10−4, . . . , 1}
and fix ε = 10−3; for both SVMs and MVL-SVM, we consider c ∈ {10−3, . . . , 104}.

6.5.2 Learning with Complete Views

In this first experiment, we compare the methods on complete datasets, where all
the points are observed on all the views. In particular, we study the impact of the
dimensionality of our latent space, controlled by the number of landmarks, on the
performances of MVL-SVM. As the rank of the Nyström-approximated Gram
matrix of MVML and the number of landmarks of MVL-SVM are comparable,
because they both measure the number of computed similarities, we draw them on
the same axis and compare these two methods also on this criterion. We explore
values ranging from 10 to the size of the training set (validation set not included).
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Because of MVML’s huge computational complexity (see Fig. 6.4), its results in
Figure 6.3 are truncated at a smaller approximation level.

Figure 6.3 – Average test accuracies (with standard deviations) w.r.t. the number of
landmarks/Nyström rank.

Figure 6.3 shows the test accuracies on both datasets. It is manifest how working on
a latent space is of great benefit: both methods that exploit this idea show significant
better test accuracies than those that learn view-specific classifiers, especially for
the uWaveGestures dataset where views are very complementary. It is worth noting
that MVL-SVM is able to reach the best performance even with a small number
of landmarks (10 for uWaveGestures and 50 for Flower17).

Moreover, majority-vote techniques seem more sensitive to the choice of points
selected for training (see Flower17) than MVL-SVM, which is consistently robust
to the variations in the set of landmarks.

Figures 6.4 and 6.5 highlight the other important advantage of MVL-SVM: its
fastness. At training time, MVL-SVM’s execution time is linear in the number of
landmarks and several magnitudes smaller than those obtained for the baselines.
At test time, MVL-SVM is only slightly beaten by MVML, but it is probably due
to better optimizations in the code. Notice how learning multiple learners (SVM-2k
and SVMs) considerably slows down both the training and the test steps. Handling
multiple models is, indeed, a heavy overhead.

Overall, MVL-SVM achieves significantly better test accuracy that the considered
baselines, even with a limited number of landmarks, while training several order of
magnitude faster and being comparably fast at test time.

6.5.3 Learning with Missing Views

With this second series of experiments, we aim to evaluate the validity of the
imputation technique proposed in Section 6.4. We make use of the two previously
described datasets that we modify for the current task: we drop random views of
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a
(a) Flower17.

b
(b) uWaveGestures.

Figure 6.4 – Training and testing times w.r.t. the number of landmarks. MVL-SVM is
very fast and scales linearly with the number of landmarks, unlike MVML.

Figure 6.5 – Average test accuracies w.r.t. the training time. Compared to the other
methods, MVL-SVM reaches high accuracy even with very low computational budget.
The x axis is in logarithmic scale.

their points with a ratio of missing views over total number of views (mV ) which
we vary over the interval [0, 0.5]. For MVL-SVM, the number of landmarks L is
fixed to 200. In Figure 6.6, we plot the test accuracies in this new setting for both
datasets, comparing MVL-SVM to SVMs with and without any reconstruction
technique. When no imputation is applied as preprocessing, the points with missing
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views are dropped for MVL-SVM, while for SVMs, as it deals with a view at a
time, they are still used for training the view-specific models corresponding to the
available views. For SVMs, we impute the missing values using Graph Laplacian
imputation [186] by fixing the Gram matrix of the view with the most points as
the reference view for reconstructing all the other views. Remark that the points
missing from the reference view will not have their views reconstructed, which might
explain the drop in accuracy of SVMs for a ratio bigger than 0.3 for Flower17.

Figure 6.6 – Test accuracies (with standard deviations) w.r.t. the ratio of missing views,
using 200 landmarks for MVL-SVM. Imputation of missing value is critical for MVL-
SVM to achieve good accuracy when facing missing views. Thanks to the proposed missing
value imputation, MVL-SVM remains more accurate even in the case of missing views.

Notice how preprocessing the dataset is fundamental for applying MVL-SVM to
the missing-view scenario. This is not surprising as, using a latent space, we can
train the model only on points observed in all the views. Even if the accuracy of
both methods (with reconstruction) decays slightly with the ratio of missing views,
the gain in performances is dramatic.

6.6 Conclusion

We proposed MVL-SVM, an effective technique for tackling multi-view problems,
by training a linear-SVM on a landmark-induced latent space, which unifies the view
information, constructed by applying non-linear multi-view similarity estimates
between the instances and a set of randomly selected landmarks. We additionally
introduced an imputation technique making it suitable for the missing-view context.
We also showed MVL-SVM’s validity, from both theoretical and empirical point
of view: we derived a generalization bound using the uniform stability framework,
and we showed empirically that our approach outperforms the considered baselines
in terms of accuracy while being several order of magnitude faster.

Apart from the generic perspectives of L3-SVMs cited in Chapter 5, we identified
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several lines of work specific to the multi-view scenario. MVL-SVM relies on a set
of landmarks that is shared across all views. According to the application at hand,
it might be interesting to consider more landmarks in some of the views, and future
work will include this consideration of different landmarks in the views. Additionally,
by using block-sparsity in the final linear-separator, automated landmark selection
could be achieved, giving MVL-SVM an even better test-time execution speed.
The missing view imputation technique can also be improved by considering a joint
optimization of the reconstruction matrix R and the linear classifier (θ, b).





Conclusion

In this manuscript, we tackled the problem of learning models capable of capturing
local characteristics of data distribution, with a focus on their generalization,
smoothness in prediction and scalability. We contributed in two parallel lines of
research in local learning: we proposed two approaches based on data partitioning
and an algorithm based on landmark similarities, adapted to single-view and multi-
view data. Thorough studies were conducted to highlight the effectiveness of the
said contributions which confirmed the soundness of their intuitions. We empirically
studied the performance of the proposed methods both on toy and real tasks,
in terms of accuracy and execution time, and compared it to state of the art
results. We also analyzed our approaches from a theoretical standpoint, by studying
their computational and memory complexities and by deriving tight generalization
bounds.

Apart from the perspectives specific to each contribution that we evoked in the
respective chapters, we consider several additional avenues for further research.
Regarding the regularization term used in Chapters 3 and 4 on the pair-wise
similarities between learned local models, we ponder new ways of estimating the
similarity graph, i.e. the penalization weights affected to each pair of models. It
would be interesting to optimize the graph as done in Chapter 4, but to drop
the uniformity constraint on the degrees and number of neighbors of each node.
A less constrained formulation would have the advantage of better capturing the
relationships between local models and of detecting communities of users when
working with personal data.

Another attractive perspective would be to study the works of Part III under
the (ε, γ, τ )−good similarities framework presented in Chapter 2. Indeed, this
framework offers a principled way for studying the quality of the linearization of the
problem induced by a mapping based on landmark similarities, like in our works. Yet,
it would not be straightforward to theoretically analyze our contributions through
this theory, as it stands for landmarks drawn i.i.d. from the data distribution and
for bounded similarity functions. These assumptions are not necessarily satisfied in
our works: we admit the use of virtual landmarks and of unbounded kernels such
as the linear kernel. Moreover, we believe that restraining the similarity function to
be a Mercer’s kernel should lead to better theoretical results.

Furthermore, we are particularly interested in methods for drawing good sets of
landmarks, in the sense that they would be minimal but representative of the data
distribution, and to study the trade-off between accuracy and scalability, depending
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on the complexity of the task. We argue that such a study on the effects of the
quality of the sample can lead to tighter generalization bounds.

Finally, it would be insightful to assess the robustness to adversarial examples of
our methods, using the measures reported in Chapter 1. As a matter of fact, we are
intrigued about the higher robustness observed in other models that learn latent
spaces w.r.t. models that do not.
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A
β-risk: a New Surrogate Risk for
Learning from Weakly Labeled
Data

This Appendix reports the publication

Valentina Zantedeschi, Rémi Emonet, and Marc Sebban. Beta-risk: a new surrogate
risk for learning from weakly labeled data. In Advances in Neural Information
Processing Systems, pages 4365–4373, 2016.

During the past few years, the machine learning community has paid attention to
developing new methods for learning from weakly labeled data. This field covers
different settings like semi-supervised learning, learning with label proportions,
multi-instance learning, noise-tolerant learning, etc. This paper presents a generic
framework to deal with these weakly labeled scenarios. We introduce the β-risk as
a generalized formulation of the standard empirical risk based on surrogate margin-
based loss functions. This risk allows us to express the reliability on the labels and
to derive different kinds of learning algorithms. We specifically focus on SVMs and
propose a soft margin β-SVM algorithm which behaves better that the state of the
art.

A.1 Introduction

The growing amount of data available nowadays allowed us to increase the confidence
in the models induced by machine learning methods. On the other hand, it also
caused several issues, especially in supervised classification, regarding the availability
of labels and their reliability. Because it may be expensive and tricky to assign a
reliable and unique label to each training instance, the data at our disposal for the
application at hand are often weakly labeled. Learning from weak supervision has
received important attention over the past few years [91, 118]. This research field
includes different settings: only a fraction of the labels are known (Semi-Supervised
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learning [229]); we can access only the proportions of the classes (Learning with
Label Proportions [154] and Multi-Instance Learning [54]); the labels are uncertain
or noisy (Noise-Tolerant Learning [3, 141, 153]); different discording labels are given
to the same instance by different experts (Multi-Expert Learning [169]); labels
are completely unknown (Unsupervised Learning [83]). As a consequence of this
statement of fact, the data provided in all these situations cannot be fully exploited
using supervised techniques, at the risk of drastically reducing the performance of
the learned models. To address this issue, numerous machine learning methods
have been developed to deal with each of the previous specific situations. However,
all these weakly labeled learning tasks share common features mainly relying on the
confidence in the labels, opening the door to the development of generic frameworks.
Unfortunately, only a few attempts have tried to address several settings with the
same approach. The most interesting one has been presented in [118] where the
authors propose WellSVM which is dedicated to deal with three different weakly
labeled learning scenarios: semi-supervised learning, multi-instance learning and
clustering. However, WellSVM focuses specifically on Support Vector Machines
and it requires to derive a new optimization problem for each new task. Even
though WellSVM constitutes a step further towards general models, it stopped
in midstream constraining the learner to use SVMs.

This paper aims to bridge this gap by presenting a generic framework for learning
from weakly labeled data. Our approach is based on the derivation of the β-
risk , a new surrogate empirical risk defined as a strict generalization of the
standard empirical risk relying on surrogate margin-based loss functions. The main
interesting property of the β-risk comes from its ability to exploit the information
given by the weakly supervised setting and encoded as a β matrix reflecting the
supervision on the labels. Moreover, the instance-specific weights β let one integrate
in classical methods the side information provided by the setting. This is the
peculiarity w.r.t. [141, 153]: in both papers, the proposed losses are defined using
class-dependent weights (fixed to 1/2 for the first paper, and dependent on the class
noise rate for the latter) while in our approach the used weights are provided for
each instance, which gives a more flexible formulation. Making use of this β-risk ,
we design a generic algorithm devoted to address different kinds of aforementioned
weakly labeled settings. To allow a comparison with the state of the art, we
instantiate it with a learner that takes the form of an SVM algorithm. In this
context, we derive a soft margin β-SVM algorithm and show that it outperforms
WellSVM.

The remainder of this paper is organized as follows: in Section A.2, we define the
empirical surrogate β-risk and show under which conditions it can be used to learn
without explicitly accessing the labels; we also show how to instantiate β according
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to the weakly labeled learning setting at hand; in Section A.3, we present our generic
iterative algorithm for learning with weakly labeled data and in Section A.8.3 we
exploit our new framework to derive a novel formulation of the Support Vector
Machine problem, the β-SVM ; finally, we report experiments in semi-supervised
learning and learning with label noise, conducted on classical datasets from the
UCI repository [120], in order to compare our algorithm with the state of the art
approaches.

A.2 From classical surrogate losses and surrogate
risks to the β-risk

In this section, we first provide reminders about surrogate losses and then exploit
the characteristics of the popular loss functions to introduce the empirical surrogate
β-risk . The β-risk formulation allows us to tackle the problem of learning with
weakly labeled data. We show under which conditions it can be used instead of the
standard empirical surrogate risk (defined in a fully supervised context). Those
conditions give insight on how to design algorithms that learn from weak supervision.
We restrain our study to the context of binary classification.

A.2.1 Preliminaries

In statistical learning, a common approach for choosing the optimal hypothesis h∗

from a hypothesis class C is to select the classifier that minimizes the expected
risk over the joint space Z = X ×Y , where X is the feature space and Y the label
space, expressed as

R`(h) =
∫
X×Y

`(yh(x))p(x, y)dxdy

with ` : C ×Z → R+ a margin-based loss function.

Since the true distribution of the data p(x, y) is usually unknown, machine learning
algorithms typically minimize the empirical version of the risk, computed over a
finite set S composed of m instances (xi, yi) i.i.d. drawn from a distribution over
X × {−1, 1}:

R`(S,h) = 1
m

m∑
i=1

`(yih(xi)).

The most natural loss function is the so-called 0-1 loss. As this function is not
convex, not differentiable and has zero gradient, other loss functions are commonly
employed instead. These losses, such as the logistic loss (e.g., for the logistic
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regression [46]), the exponential loss (e.g., for boosting techniques [69]) and the
hinge loss (e.g., for the SVM [49]), are convex and smooth relaxations of the 0-1
loss. Theoretical studies on the characteristics and behavior of such surrogate losses
can be found in [19, 146, 159]. In particular, [146] showed that each commonly
used surrogate loss can be characterized by a permissible function φ (see below)
and rewritten as Fφ(x)

Fφ(x) =
φ∗(−x)− aφ

bφ

where φ∗(x) = supa(xa− φ(a)) is the Legendre conjugate of φ (for more details,
see [32]), aφ = −φ(0) = −φ(1) ≥ 0 and bφ = −φ(1

2)− aφ > 0. As presented by
the authors of [95] and [146], a permissible function is a function f : [0, 1]→ R−,
symmetric about −1

2 , differentiable on ]0, 1[ and strictly convex. For instance, the
permissible function φlog related to the logistic loss Fφ(x) = log(1 + exp−x) is:

φlog(x) = x log(x) + (1− x) log(1− x)

and aφ = 0 and bφ = log(2).

As detailed in [146], considering a surrogate loss Fφ, the empirical surrogate risk of
an hypothesis h : X → R w.r.t. S can be expressed as:

Rφ(S,h) = 1
m

m∑
i=1

Dφ

(
yi,∇−1

φ (h(xi))
)
=
bφ
m

m∑
i=1

Fφ(yih(xi))

with Dφ the Bregman Divergence

Dφ(x, y) = φ(x)− φ(y)− (x− y)∇φ(y).

In order to evaluate such risk Rφ(S,h), it is mandatory to provide the labels y
for all the instances. In addition, it is not possible to take into account eventual
uncertainties on the given labels. Consequently, Rφ is defined in a totally supervised
context, where the labels y are known and considered to be true. In order to face
the numerous situations where training data may be weakly labeled, we claim that
there is a need to fill the gap by defining a new empirical surrogate risk that can
deal with such settings. In the following section, we propose a generalization of
the empirical surrogate risk, called the empirical surrogate β−risk, which can be
employed in the context of weakly labeled data instead of the standard one under
some linear conditions on the margin.

A.2.2 The Empirical Surrogate β-risk

Before defining the empirical surrogate β-risk for any loss Fφ and hypothesis h ∈ C,
let us rewrite the definition of Rφ introducing a new set of variables named β, and
that can be laid out as a 2×m matrix.
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Lemma A.1 For any S, φ and h, and for any non-negative real coefficients β-1
i and β+1

i

defined for each instance xi ∈ S such that β-1
i + β+1

i = 1, the empirical surrogate
risk Rφ(S,h) can be rewritten as

Rφ(S,h) = Rφ(S,h, β)

where

Rφ(S,h, β) = bφ
m

m∑
i=1

∑
σ∈

{-1,+1}

βσi Fφ(σh(xi)) +
1
m

m∑
i=1

β-yi
i (−yih(xi)).

The coefficient β+1
i (resp. β-1i ) for an instance xi can be interpreted here as the

degree of confidence in (or the probability of) the label +1 (resp. -1) assigned to xi.

Proof.

Rφ(S,h) = bφ
m

m∑
i=1

Fφ(yih(xi))

=
bφ
m

m∑
i=1

(
βyii Fφ(yih(xi)) + β-yii Fφ(yih(xi))

)
(A.1)

=
bφ
m

m∑
i=1

(
βyii Fφ(yih(xi)) + β-yii

(
Fφ(−yih(xi))−

yih(xi)

bφ

))
(A.2)

=
bφ
m

m∑
i=1

∑
σ∈

{-1,+1}

βσi Fφ(σh(xi)) +
1
m

m∑
i=1

β-yii (−yih(xi)). (A.3)

Eq. (A.1) is because β-1i + β+1
i = 1; Eq. (A.2) is due to the fact that φ∗(−x) =

φ∗(x)− x (see the supplementary material) for any permissible function φ, so that
Fφ(x) =

φ∗(−x)−aφ
bφ

=
φ∗(x)−aφ−x

bφ
= Fφ(−x)− x

bφ
.

From Eq. (A.3), and considering that the sample S is composed by the finite set of
features X and labels Y , we can write that

Rφ(S,h) = Rφ(S,h, β) = Rβφ(X ,h)− 1
m

m∑
i=1

β-yii yih(xi) (A.4)

where
Rβφ(X ,h) = bφ

m

m∑
i=1

∑
σ∈

{-1,+1}

βσi Fφ(σh(xi))

is the empirical surrogate β-risk for a matrix β = [β+1
0 , ..., β+1

m |β-10 , ..., β-1m].

It is worth noticing that Rφ(S,h, β) is expressed in the form of a sum of two terms:
the second one takes into account the labels of the data, while the first one, the
β-risk, focuses on the loss suffered by h over X without explicitly needing the labels
Y .
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The empirical β-risk is a generalization of the empirical risk: setting βyii = 1 (and
thus β−yii = 0) for each instance, the second term vanishes and we retrieve the clas-
sical formulation of the empirical risk. Additionally, as developed in Section A.2.3,
the introduction of β makes it possible to inject some side-information about the
labels. For this reason, we claim that the β-risk is suited to deal with classification
in the context of weakly labeled data.

Let us now focus on the conditions allowing the empirical β-risk (i) to be a surrogate
of the 0-1 loss-based empirical risk and (ii) to be sufficient to learn with a weak
supervision on the labels. From (A.4), we deduce:

Rβφ(X ,h) = Rφ(S,h, β) + 1
m

m∑
i=1

β-yii yih(xi) ≥ R0/1(S,h) + 1
m

m∑
i=1

β-yii yih(xi)

(A.5)

where R0/1(S,h) the empirical risk related to the 0-1 loss and Eq. (A.5) is because
bφFφ(x) ≥ F0/1(x) (for any surrogate loss).

It is possible to ensure that the β-risk is both a convex upper-bound of the 0-
1 loss based risk and a relaxation as tight as the traditional risk (i.e., that we
have R0/1(S,h) ≤ Rβφ(X ,h) ≤ Rφ(S,h)) is to force the following constraint:∑m
i=1 β

-yi
i yih(xi) = 0.

Unfortunately, the constraint ∑m
i=1 β

-yi
i yih(xi) = 0 still depends on the vector y of

labels, which is not always provided and most likely uncertain or inaccurate in a
weakly labeled data setting. We will show in Section A.3 that this issue can be
overcome by means of an iterative 2-step learning procedure, that first learns a
classifier minimizing the β-risk , possibly violating the constraint, and then learns a
new matrix β that fulfills the constraint.

A.2.3 Instantiating β for Different Weakly Supervised Settings

The β-risk can be used as the basis for handling different learning settings, including
weakly labeled learning. This can be achieved by fixing the β values, choosing
their initial values or putting a prior on them. We have already seen that, fully
supervised learning can be obtained by fixing all β values to 1 for the assigned class
and to 0 for the opposite class. The current section provides guidance on how β

could be instantiated to handle various weakly labeled settings.

In a semi-supervised setting, as detailed in the experimental section, we propose to
initialize the β of unlabeled points to 0.5 and then to automatically refine them
in an iterative process. Going further, and if we are ready to integrate spatial or
topological information in the process, the β values of each unlabeled point could
be initialized using a density estimation procedure (e.g., by considering the label
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proportions of the k nearest labeled neighbors). In the context of multi-expert
learning, the experts’ votes for each instance i can simply be averaged to produce
the βi values (or their initialization, or a prior). The case of learning with label
proportions is especially useful for privacy-preserving data processing: the training
points are grouped into bags and, for each bag, the proportion of labels are given.
One way of handling such supervision is to initialize, for each bag, all the β with the
same value that corresponds to the provided proportion of labels. Noise-tolerant
learning aims at learning in the presence of label noise, where labels are given but
can be wrong. For any point that can be possibly noisy, a direct approach is to
use lower β values (instead of 1 in the supervised case) and refine them as in the
semi-supervised setting. β can also be initialized using the label proportion of the k
nearest labeled example (as done in the experimental section). The case of Multiple
Instance Learning (MIL) is trickier: in a typical MIL setting, instances are grouped
in bags and the supervision is given as a single label per bag that is positive if the
bag contains at least one positive instance (negative bags contain only negative
instances). A straightforward solution would be to recast the MIL supervision as
a “learning with label proportion” (e.g., considering exactly one positive instance
in each bag). It is not fully satisfying and a more promising solution would be
to consider, within each bag, the set of β+1 variables and put a sparsity-inducing
prior on them. This approach would be a less-constrained version of the relaxation
proposed in WellSVM [118] (where it is supposed that there is exactly one positive
instance per positive bag) and could be achieved by a l1 penalty or using a Dirichlet
prior (with low α to promote sparsity).

A.3 An iterative algorithm for weakly-labeled
learning

As explained in Section A.2, a sufficient condition for guaranteeing that the β-risk is
a convex upper-bound of the 0-1 loss based risk and it is not worse than the
traditional risk is to fix ∑m

i=1 β
-yi
i yih(xi) = 0. However, the previous constraint

depends on the labels. We overcome this problem by (i) iteratively learning a
classifier minimizing the β-risk and most likely violating the constraint and then (ii)
learning a new matrix β that fulfills it. The algorithm is generic. It can be used in
different weakly labeled settings and can be instantiated with different losses and
regularizations, as we will do in the next Section with SVMs.

As the process is iterative, let tβ be the estimation of β at iteration t. At each
iteration, our algorithm consists in two steps. We first learn an hypothesis h for
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the following problem P1:

ht+1 = P1(X , tβ) = arg min
h

cR
tβ
φ (X ,h) +N (h)

which boils down to minimizing the N -regularized empirical surrogate β-risk over
the training sample X of size m, where N , for instance, can take the form of a L1

or a L2 norm.

Then, we find the optimal β of the following problem P2 for the points of X :

t+1β = P2(X ,ht+1) = arg min
β
Rβφ(X ,ht+1)

s.t.
m∑
i=1

β-yii (−yi ht+1(xi)) = 0

β-1i + β+1
i = 1, β-1i ≥ 0, β+1

i ≥ 0 ∀i = 1..m .

For this step, a vector of labels is required. We choose to re-estimate it at each
iteration according to the current value of β: we affect to an instance the most
probable label, i.e. the σ corresponding to the biggest βσ. The matrix β has to be
initialized at the beginning of the algorithm according to the problem setting (see
Section A.2.3). While some stabilization criterion does not exceed a given threshold
ε, the two steps are repeated.

A.4 Soft-margin β-SVM

A major advantage of the empirical surrogate β-risk is that it can be plugged in
numerous learning settings without radically modifying the original formulations.
As an example, in this section we derive a new version of the Support Vector
Machine problem, using the empirical surrogate β-risk , that takes into account the
knowledge provided for each training instance (through the matrix β).

The soft-margin β-SVM optimization problem is a direct generalization of a standard
soft-margin SVM and is defined as follows:

arg min
θ

1
2 ‖θ‖

2
2 + c

m∑
i=1

(
β-1i ξ

-1
i + β+1

i ξ+1
i

)

s.t. σ(θTµ(xi) + b) ≥ 1− ξσi ∀i = 1..m,σ ∈ {−1, 1}

ξσi ≥ 0 ∀i = 1..m,σ ∈ {−1, 1}

where θ ∈ X ′ is the vector defining the margin hyperplane and b its offset, µ : X →
X ′ a mapping function and c ∈ R a tuned hyper-parameter. In the rest of the
paper, we will refer to K : X ×X → R as the kernel function corresponding to µ,
i.e. K(xi,xj) = µ(xi)µ(xj).
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The corresponding Lagrangian dual problem is given by (the complete derivation is
provided in the supplementary material):

max
α
−1

2

m∑
i=1

∑
σ∈

{-1,+1}

m∑
j=1

∑
σ′∈
{-1,+1}

ασi σα
σ
j σ
′K(xi,xj) +

m∑
i=1

∑
σ∈

{-1,+1}

ασi

s.t. 0 ≤ ασi ≤ cβσi ∀i = 1..m, σ ∈ {−1, 1}
m∑
i=1

∑
σ∈

{-1,+1}

ασi σ = 0 ∀i = 1..m, σ ∈ {−1, 1}

which is concave w.r.t. α as for the standard SVM.

The β-SVM formulation differs from the SVM one in two points: first, the number
of Lagrangian multipliers is doubled, because we consider both positive and negative
labels for each instance; second, the upper-bounds for α are not the same for all
instances but depend on the given matrix β. Like the coefficient c in the classical
formulation of SVM, those upper-bounds play the role of trade-off between under-
fitting and over-fitting: the smaller they are, the more robust to outliers the learner
is but the less it adapts to the data. It is then logical that the upper-bound for an
instance i depends on βσi because it reflects the reliability on the label σ for that
instance: if the label σ is unlikely, its corresponding ασi will be constrained to be
null (and its adversary will have more chance to be selected as a support vector,
as βσi + β − σi = 1). Also, those points for which no label is more probable than
the other (βσi → 0.5) will have less importance in the learning process compared to
those for which a label is almost certain. In order to fully exploit the advantages of
our formulation, c has to be finite and bigger than 0. As a matter of fact, when
c→∞ or c→ 0, the constraints become exactly those of the original formulation.

A.5 Experimental results

In the first part of this section, we present some experimental results obtained by
adapting the iterative algorithm presented in Section A.3 for semi-supervised learning
and combining it with the previously derived β-SVM . Note that some approaches
based on SVMs have been already presented in the literature to address the problem
of semi-supervised learning. Among them, TransductiveSVM [35] iteratively learns
a separator with the labeled instances, classifies a subset of the unlabeled instances
and adds it to the training set. On the other hand, WellSVM [118] combines the
classical SVM with a label generation strategy that allows one to learn the optimal
separator, even when the training sample is not completely labeled, by convexly
relaxing the original Mixed-Integer Programming problem. In [118], WellSVM has



146

been shown to be very effective and better than TransductiveSVM and the state
of the art. For this reason, we compare in this section β-SVM to WellSVM. In
the second subsection, we present some preliminary results in the noise-tolerant
learning setting, showing how β-SVM behaves when facing data with label noise.

A.5.1 Iterative β-SVM for Semi-Supervised Learning

We compare our method’s performances to those of WellSVM, that has been proved,
in [118], to performs in average better than the state of the art semi-supervised
learning methods based on SVM and the standard SVM as well. In a semi-supervised
context, a set Xl of labeled instances of size ml and a set Xu of unlabeled instances
of size mu are provided. The matrix β is initialized as follows:

∀i = 1..ml and ∀σ in {−1, 1}, 0βσi = 1 if σ = yi, 0 otherwise,

∀i = ml+1..mu and ∀σ in {−1, 1}, 0βσi = 0.5

and we learn an optimal separator:

ht+1 = P1(Xl ∪Xu, tβ) = arg min
h

c1R
tβ
φ (Xl,h) + c2R

tβ
φ (Xu,h) +N (h).

Here c1 and c2 are balance constants between the labeled and unlabeled set: when
the number of unlabeled instances become greater than the number of labeled
instances, we need to reduce the importance of the unlabeled set in the learning
procedure because there exists the risk that the labeled set will be ignored. We
consider the provided labels to be correct, so we keep the corresponding lβ fixed
during the iterations of the algorithm and estimate uβ by optimizing P2(Xu,ht+1).
The iterative algorithm with β-SVM is implemented in Python using Cvxopt (for
optimizing β-SVM ) and Cvxpy 1 with its Ecos solver [55].

For each dataset, we show in Figure A.1 the accuracy of the two methods with an
increasing proportion of labeled data. The different approaches are compared on
the same kernel, either the linear or the gaussian, the one that gives higher overall
accuracy. As a matter of fact, the choice of the kernel depends on the geometry of
the data, not on the learning method.

For each proportion of labeled data, we perform a 4-fold cross-validation and we
show the average accuracy over 10 iterations. Concerning the hyper-parameters of
the different methods, we fix c2 of β-SVM to c1ml

m , c1 of WellSVM to 1 as explained
in [118] and all the other hyper-parameters (c1 for β-SVM and c2 for WellSVM) are
tuned by cross-validation through grid search. As for the stopping criteria, we fix ε
of β-SVM to 10−5 + 10−3‖h‖F and ε of WellSVM to 10−3 and the maximal number

1http://cvxopt.org/ and http://www.cvxpy.org/
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Figure A.1 – Comparison of the mean accuracies of WellSVM and β-SVM versus the
percentage of labeled data on different UCI datasets.

of iterations to 20 for both methods. When using the gaussian kernel, the γ in
K(xi,xj) = exp(−‖xi − xj‖22/γ) is fixed to the mean distance between instances.

Our method performs better than WellSVM, with few exceptions, and is more
efficient in terms of CPU time: for the Australian dataset, the biggest dataset in
number of features and instances, WellSVM is in average 30 times slower than our
algorithm (without particular optimization efforts).

A.5.2 Preliminary Results Under Label-Noise

We quickly tackle another setting of the weakly labeled data field: the noise-tolerant
learning, the task of learning from data that have noisy or uncertain labels. It has
been shown in [28] that SVM learning is extremely sensitive to outliers, especially
the ones lying next to the boundary. We study, the sensitivity of β-SVM to label
noise artificially introduced on the Ionosphere dataset. We consider two initialization
strategies for β: the standard on where βyi = 1 and β−yi = 0 and the 4-nn one
where βσ is set to the proportion of neighboring instances with label σ. In Figure A.4,
we draw the mean accuracy over 4 repetitions w.r.t. an increasing percentage (as
a proportion of the smallest dataset) of two kinds of noise: the symmetric noise,
introduced by swapping the labels of instances belonging to different classes, and
the asymmetric noise, introduced by gradually changing the labels of the instances
of one class. These preliminary results are encouraging and show that locally
estimating the conditional class density to initialize the β matrix improves the
robustness of our method to label noise.
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Figure A.2 – Comparison of the mean accuracy versus the percentage of noise of iterative
β-SVM with different initializations of β. The standard curve refers to the initialization
of βyi = 1 and β−yi = 0 and the 4-nn to the initialization of βσ to the proportion of
neighboring instances with label σ.

A.6 Conclusion

This paper focuses on the problem of learning from weakly labeled data. We
introduced the β-risk which generalizes the standard empirical risk while allowing
the integration of weak supervision. From the expression of the β-risk , we derived a
generic algorithm for weakly labeled data and specialized it in an SVM-like context.
The resulting β-SVM algorithm has been applied in two different weakly labeled
settings, namely semi-supervised learning and learning with label noise, showing
the advantages of the approach.

The perspectives of this work are numerous and of two main kinds: covering
new weakly labeled settings and studying theoretical guarantees. As proposed in
Section A.2.3, the β-risk can be used in various weakly labeled scenarios. This
requires to use different strategies for the initialization and the refinement of β,
and also to propose proper priors for these parameters. Generalizing the proposed
β-risk to a multi-class setting is a natural extension as β is already a matrix of class
probabilities. Another broad direction involves deriving robustness and convergence
bounds for the algorithms built on the β-risk .
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A.8 Supplementary material

A.8.1 Overview

This supplementary material is organized as follows: in Section A.8.2, we prove the
property of a Legendre conjugate of a permissible function used in Eq.(2) of Sec.(2)
of the paper; in Section A.8.3, we derive the dual problem of a soft-margin β-SVM ;

A.8.2 Legendre Conjugate of Permissible Functions

The Legendre conjugate of a differentiable and strictly convex function φ can be
written as:

φ∗(x) = x∇−1
φ (x)− φ(∇−1

φ (x)).

In the case of a permissible function φ, its Legendre conjugate has the following
property: φ∗(−x) = φ∗(x)− x.

Proof.

φ∗(−x) = −x∇−1
φ (−x)− φ(∇−1

φ (−x))

= −x(1−∇−1
φ (x))− φ(1−∇−1

φ (x)) (A.6)

= −x+ x∇−1
φ (x)− φ(∇−1

φ (x)) (A.7)

= φ∗(x)− x

Because of the symmetry of φ about −1
2 , in Eq. (A.6) ∇−1

φ (−x) = 1−∇−1
φ (x) and

in Eq. (A.7) φ(1− x) = φ(x).

A.8.3 Derivation of Soft-margin β-SVM

The soft-margin β-SVM optimization problem is a direct generalization of a standard
soft-margin SVM and is defined as follows:

arg min
θ

1
2 ‖θ‖

2
2 + c

m∑
i=1

(
β-1i ξ

-1
i + β+1

i ξ+1
i

)

s.t. σ(θTµ(xi) + b) ≥ 1− ξσi ∀i = 1..m,σ ∈ {−1, 1}

ξσi ≥ 0 ∀i = 1..m,σ ∈ {−1, 1}

where θ ∈ X ′ is the vector defining the margin hyperplane and b its offset, µ :
X → X ′ a mapping function and c ∈ R a tuned hyper-parameter. In the rest of
the paper, we will refer to K : X2 → R as the kernel function corresponding to µ
(K(xi,xj) = µ(xi)µ(xj)).



150

Instead of solving the previous primal problem, it is preferable to solve its La-
grangian dual problem given by maximizing the corresponding Lagrangian w.r.t. its
Lagrangian multipliers, which gives a nice Quadratic Programming problem that
can be solved by common optimization techniques. The Lagrangian can be written
as follows:

L(θ, b, ξ,α, r) =1
2 ‖θ‖

2
2 + c

m∑
i=1

(
β-1i ξ

-1
i + β+1

i ξ+1
i

)

−
m∑
i=1

∑
σ∈

{-1,+1}

ασi
(
σ(θTµ(xi) + b) + ξσi − 1

)
−

m∑
i=1

∑
σ∈

{-1,+1}

rσi ξ
σ
i

(A.8)

where α ∈ R2∗m and r ∈ R2∗m are the Lagrangian multipliers. It is obvious that:

max
α,r≥0

min
θ,b,ξ
L(θ, b, ξ,α, r) ≤ min

θ,b,ξ
max
α,r≥0

L(θ, b, ξ,α, r)

where the left term corresponds to the optimal value of the dual problem and the
right one to the primal’s one. The dual and the primal problems have the same
value at optimality if the Karush-Kuhn-Tucker (KKT) conditions are not violated
(see [32]). By setting the gradient of L w.r.t. θ, b and ξ to 0, we find the saddle
point corresponding to the function minimum:

∇θL(θ, b, ξ,α, r) = θ−
m∑
i=1

∑
σ∈

{-1,+1}

ασi σµ(xi)

∇bL(θ, b, ξ,α, r) = −
m∑
i=1

∑
σ∈

{-1,+1}

ασi σ

∇ξσi L(θ, b, ξ,α, r) = cβσi − ασi − rσi

which give

θ =
m∑
i=1

∑
σ∈

{-1,+1}

ασi σµ(xi) (A.9)

m∑
i=1

∑
σ∈

{-1,+1}

ασi σ = 0 (A.10)

ασi ≤ cβσi (A.11)
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We can now write the QP dual problem by replacing θ by its expression (E.1) and
simplifying following (E.2) and (E.3):

max
α
−1

2

m∑
i=1

∑
σ∈

{-1,+1}

ασi σ
m∑
j=1

∑
σ∈

{-1,+1}

ασj σK(xi,xj) +
m∑
i=1

∑
σ∈

{-1,+1}

ασi

s.t. 0 ≤ ασi ≤ cβσi ∀i = 1..m, σ ∈ {−1, 1}
m∑
i=1

∑
σ∈

{-1,+1}

ασi σ = 0 ∀i = 1..m, σ ∈ {−1, 1}

which is concave w.r.t. α.

Proof.

L(α) = 1
2

m∑
i=1

∑
σ∈

{-1,+1}

ασi σµ(xi)
m∑
j=1

∑
σ∈

{-1,+1}

ασj σµ(xj) + c
m∑
i=1

(
β-1i ξ

-1
i + β+1

i ξ+1
i

)

−
m∑
i=1

∑
σ∈

{-1,+1}

ασi

σ

 m∑
j=1

∑
σ∈

{-1,+1}

ασj σµ(xj)

µ(xi) + b

+ ξσi −1

− m∑
i=1

∑
σ∈

{-1,+1}

rσi ξ
σ
i

(A.12)

= −1
2

m∑
i=1

∑
σ∈

{-1,+1}

ασi σµ(xi)
m∑
j=1

∑
σ∈

{-1,+1}

ασj σµ(xj) +
m∑
i=1

∑
σ∈

{-1,+1}

ασi

+
m∑
i=1

∑
σ∈

{-1,+1}

(cβσi − ασi − rσi ) ξσi − b
m∑
i=1

∑
σ∈

{-1,+1}

ασi σ (A.13)

= −1
2

m∑
i=1

∑
σ∈

{-1,+1}

ασi σ
m∑
j=1

∑
σ∈

{-1,+1}

ασj σK(xi,xj) +
m∑
i=1

∑
σ∈

{-1,+1}

ασi (A.14)

In Eq. (A.13) the third and the fourth terms are null because of (E.2) and (E.3).

We need the following two additional constraints in order to respect the KKT
conditions which justify guarantee that the optimal value found by solving the dual
problem corresponds to the optimal value of the primal:

ασi
(
σ(θT + b)− 1 + ξσi

)
= 0 ∀ i = 1..m,σ ∈ {−1, 1}

rσi ξ
σ
i = 0 ∀ i = 1..m,σ ∈ {−1, 1}

Once the Lagrangian dual problem solved, the characteristic vector θ and offset b
of the optimal margin hyperplane can be retrieved by means of the support vectors



152

machine, i.e. the instances whose corresponding ασi are strictly greater than 0:

θ =
m∑
i)1

∑
σ∈

{-1,+1}

ασi σµ(xi)

b = θµ(xk)− σk

and the new instances can be classified :

y(x) = sign(
m∑
i=1

∑
σ∈

{-1,+1}

(ασi σK(xi,x)) + b)

A.8.4 Additional Experiments: Semi-Supervised Learning

We report a table of mean accuracies with their relative errors of the performances
of standard SVM, WellSVM and our method on 7 UCI datasets with 5%,10% and
15% of labeled instances of the training sets.

A.8.5 Additional Experiments: Robustness to Label Noise

Here we report the results of applying β-SVM to a synthetic dataset and study its
robustness to artificially induced label noise.

The synthetic dataset consists in 40 instances of 2 balanced classes: the instances
of each class are uniformly distributed around a center point so that they can be
easily classified by a linear separator to which we will refer as the true separator.

In Fig. A.4, we compare the linear classifiers learned at each iteration of our iterative,
algorithm with β-SVM , with a standard linear SVM and with the true separator.
We conducted the experiment as follows: we apply the two methods first on the
original dataset, then on a dataset where we swapped the label of a random instance
of each class and so on with an increasing number of swapped labels.

We notice that our method is more robust to label noise: even though at the
first iteration, we learn the same separator as the standard linear SVM, through
the following iterations the algorithm converges to a separator closer to the true
separator.
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Table A.1 – Mean accuracies with their relative errors of the performances of standard
SVM, WellSVM and our method on 7 UCI datasets with 5%,10% and 15% of labeled
instances of the training sets.

Dataset % labeled SVMs WellSVM betaSVM

ionosphere 5 0.74± 0.02 0.72±0.04 0.77±0.03
10 0.78± 0.03 0.79±0.03 0.80±0.04
15 0.81± 0.01 0.82±0.02 0.81±0.02

sonar 5 0.58± 0.06 0.58±0.03 0.59±0.05
10 0.65± 0.04 0.64±0.04 0.66±0.05
15 0.65± 0.02 0.67±0.02 0.67±0.02

liver 5 0.59±0.02 0.61±0.04 0.55±0.04
10 0.61±0.04 0.64±0.03 0.58±0.03
15 0.64±0.04 0.64±0.03 0.58±0.03

splice 5 0.53±0.07 0.50±0.07 0.53±0.06
10 0.56±0.02 0.55±0.05 0.55±0.07
15 0.60±0.03 0.56±0.05 0.56±0.04

heart-statlog 5 0.64±0.04 0.55±0.03 0.71±0.04
10 0.72±0.03 0.62±0.02 0.76±0.03
15 0.73±0.02 0.63±0.03 0.77±0.02

australian 5 0.72± 0.05 0.64± 0.01 0.73±0.06
10 0.73±0.03 0.72± 0.04 0.73±0.04
15 0.76±0.07 0.75± 0.03 0.75± 0.04

pima 5 0.65±0.01 0.62±0.03 0.71±0.01
10 0.69±0.01 0.63±0.03 0.72±0.01
15 0.71±0.01 0.64±0.03 0.72±0.01



154

Figure A.3 – Artificially induced label noise: the baseline, here, corresponds to the separator
learned with a classical SVM. The first figure shows the learned separators with the original
labels, and the other figures show the results for an increasing number of swapped labels
going from left to right and from to bottom.
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Figure A.4 – Artificially induced label noise: the baseline, here, corresponds to the separator
learned with a classical SVM. The first figure shows the learned separators with the original
labels, and the other figures show the results for an increasing number of swapped labels
going from left to right and from to bottom.
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Adversarial Attacks

This Appendix reports the publication

Valentina Zantedeschi, Maria-Irina Nicolae, and Ambrish Rawat. Efficient defenses
against adversarial attacks. In Proceedings of the 10th ACM Workshop on Artificial
Intelligence and Security, pages 39–49. ACM, 2017.

Following the recent adoption of deep neural networks (DNN) accross a wide range
of applications, adversarial attacks against these models have proven to be an
indisputable threat. Adversarial samples are crafted with a deliberate intention of
undermining a system. In the case of DNNs, the lack of better understanding of
their working has prevented the development of efficient defenses. In this paper,
we propose a new defense method based on practical observations which is easy
to integrate into models and performs better than state-of-the-art defenses. Our
proposed solution is meant to reinforce the structure of a DNN, making its prediction
more stable and less likely to be fooled by adversarial samples. We conduct an
extensive experimental study proving the efficiency of our method against multiple
attacks, comparing it to numerous defenses, both in white-box and black-box setups.
Additionally, the implementation of our method brings almost no overhead to the
training procedure, while maintaining the prediction performance of the original
model on clean samples.

B.1 Introduction

Deep learning has proven its prowess across a wide range of computer vision appli-
cations, from visual recognition to image generation [113]. Their rapid deployment
in critical systems, like medical imaging, surveillance systems or security-sensitive
applications, mandates that reliability and security are established a priori for deep
learning models. Similarly to any computer-based system, deep learning models can
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FGSM DeepFool

Without defenses

With our defenses

Figure B.1 – Minimal perturbations needed for fooling a model on the first ten images from
MNIST. The original examples are marked by the green rectangle. With our defenses, the
attack becomes visually detectable.

potentially be attacked using all the standard methods (such as denial of service
or spoofing attacks), and their protection only depends on the security measures
deployed around the system. Additionally, DNNs have been shown to be sensitive
to a threat specific to prediction models: adversarial examples [22, 179]. These are
input samples which have deliberately been modified to produce a desired response
by a model (often, misclassification or a specific incorrect prediction which would
benefit the attacker).

Adversarial examples pose an asymmetric challenge with respect to attackers and
defenders. An attacker aims to obtain his reward from a successful attack without
raising suspicion. A defender on the other hand is driven towards developing
strategies which can guard their models against all known attacks and ideally for
all possible inputs. Furthermore, if one would try to prove that a model is indeed
secure (that is, can withstand attacks yet to be designed), one would have to provide
formal proof, say, through verification [86]. This is a hard problem, as this type
of methods does not scale to the number of parameters of a DNN. For all these
reasons, finding defense strategies is hard.

Apart from the security aspects, adversarial examples for image classification have
other peculiar properties. First and foremost, the imperceptible difference between
adversarial and legitimate examples provides them with an effortless capacity of
attack; this is only reinforced by the transferability of such samples across different
models, allowing for black-box attacks [22, 149]. Moreover, the high confidence of
misclassification proves that the model views adversarial samples as regular inputs.
The potential damage of adversarial attacks is increased by the existence of such
samples in the physical world [103]: showing printed versions of adversarial images
to a camera which will feed then to a DNN has the same effect as just presenting
them to the model without passing through a physical support. Another intriguing
property is that nonsensical inputs (e.g. crafted noise) are interpreted by the model
as natural examples with high confidence [20, 143]. From the perspective of learning,
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these counterintuitive aspects are related to the more fundamental questions of
what does a model learn and how well it is able to generalize [128, 223]. As a
matter of fact, the mere existence of adversarial samples suggests that DNNs might
be failing to extract concepts from the training set and that they would, instead,
memorize it.

A good understanding of the weaknesses of deep learning models should bring
to better attack strategies, and most importantly more effective defenses. While
the cause is not completely understood to this day, multiple hypotheses have
been suggested to explain their sensitivity to adversarial inputs. One of the first
such hypothesis stated that the high complexity and non-linearity [179] of neural
networks can assign random labels in areas of the space which are under-explored.
Moreover, these adversarial examples would be rare and would only exist in small
regions of the space, similar to pockets. These theories have been refuted, since
they are unable justify the transferability of adversarial samples from one model
to another. Moreover, it has been shown that linear models also suffer from this
phenomenon. [77] proposed a linearity hypothesis instead: deep neural networks are
highly non-linear with respect to their parameters, but mostly linear with respect
to their inputs, and adversarial examples are easy to encounter when exploring a
direction orthogonal to a decision boundary. Another conjecture to explain the
existence of adversarial examples is the cumulation of errors while propagating the
perturbations from layer to layer. A small carefully crafted perturbation in the
input may result in a much greater difference in the output layer, effect that is only
magnified in high dimensional spaces, causing the activation of the wrong units in
the upper layers.

In this paper, we make the following contributions:

• We propose a two-fold defense method which is easy to setup and comes
at almost no additional cost with respect to a standard training procedure.
The method is designed to reinforce common weak points of deep networks
and to smooth the decision functions. As a consequence, it is agnostic to
the type of attack used to craft adversarial examples, making it effective in
multiple settings. Figure B.1 shows examples of clean images which are then
perturbed with standard attacks. When the model uses the proposed defense,
the perturbation necessary for misclassification is much larger, making the
attack detectable and, in some cases, turning the images into nonsense.

• We perform an extended experimental study, opposing an important number
of attacks to the most effective defense methods available, alongside our
proposed defense. We evaluate them according to multiple metrics and prove
that accuracy by itself is not a sufficient score. We explore white-box and
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black-box attacks alike, to account for different adversarial capacities, as well
as transferability of examples.

The rest of this document is structured as follows. Section B.2 provides an overview
of the existing attack and defense methods. Section B.3 introduces the proposed
defense method, followed by an extensive experimental study in Section B.4. We
conclude this paper in Section B.5.

B.2 Related work

Background and notation A neural network can be formalized as a function
F (x, θ) = y taking inputs x ∈ Rn and providing outputs y ∈ Rm w.r.t. a set of
parameters θ. This paper covers the case of multi-class classification, where the
last layer in the network is the softmax function, and m is the number of labels.
The softmax function has two main properties: (i) it amplifies high values, while
diminishing smaller ones, and (ii) it outputs vectors y of non-negative values which
sum to 1, giving them an interpretation of probability distributions. The input x is
then attributed the class label with the highest probability. Now consider a network
F containing L layers, F1 being the input and FL the softmax layer. An internal
layer Fj can be written as:

Fj(xj−1, (θj , θ̂j)) = σ(θj · xj−1) + θ̂j ,

where σ(·) is the activation function, θj and θ̂j are the parameters of layer Fj and
xj−1 is the output of the previous layer. The most popular activation function, and
almost the only one that has been studied in an adversarial setting, is the Rectified
Linear Unit, or RELU [74].

In our study of adversarial learning, we focus on the task of image classification, as
this type of data is readily interpretable by humans: it is possible to distinguish
true adversarial examples, i.e. perceptually identical to the original points, from
rubbish ones, i.e. overly perturbed and meaningless. Consider an image of size
w × h pixels with pixel values scaled between 0 and 1. In the greyscale case,
such an image can be viewed as a vector x ∈ Rw·h, where each xi denotes a
pixel. Similarly, RGB images have three color channels and are written as vectors
x ∈ R3·w·h. The problem of crafting adversarial examples can be formulated as
trying to find samples x′ = x+ ∆x which fool the model into making incorrect
predictions. Adversarial machine learning is formalized for the first time in the
pioneering work of [51] and [126], where game theoretical approaches are proposed
to attack (linear) classification models. [11] provide an extensive taxonomy of
attack types against machine learning, encompassing both the attacks on test sets
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considered in the present paper (also known as evasion attacks), as well as training
set tampering (poisoning attacks). The purpose of their proposed framework, as
well as that of following work from [24], is to provide the tools for determining
under which considerations machine learning can be secure.

[179] and [22] are the first adversarial attacks against deep neural networks, aiming
to achieve a target class prediction. The method in [179] is expressed as a box-
constrained optimization objective, solved through L-BFGS:

min
∆x

F (x+ ∆x) 6= F (x), s.t. x′ ∈ [0, 1]n. (B.1)

Although effective in producing adversarial examples, this attack is computationally
expensive to the point where its usage is not practical. Its counterpart in [22] uses
a similar objective, enhanced by a regularizer aiming to produce attack samples
placed in high density input regions. This provides the attack with better mimicking
and concealing capacitites. In order to speed up the computation of adversarial
examples, the attack methods subsequently proposed [38, 77, 139, 151] all solve a
first-order approximation of Problem (B.1), which has a geometrical interpretation.
The resulting perturbations are also effective in fooling the model, probably because
commonly used deep architectures, such as the ones with piecewise linear RELU,
are highly linear w.r.t. the input [77].

We now discuss the methods which have shaped the current state-of-the-art in
adversarial attacks for deep neural networks. Any of the following attacks can be
deployed in two ways: either by crafting the adversarial examples having knowledge
of the architecture and the parameters of the attacked model (white-box attacks)
or by crafting them using a similar model, plausible for the considered task, or a
surrogate one as in [149] without exploiting any sensitive information (black-box
attacks).

Attacks One of the gradient-based methods is the Jacobian saliency map attack
(JSMA) [151], which uses the derivative of the neural network with respect to the
input image to compute the distortion iteratively. Each iteration, the pixel with the
highest derivative is modified by a fixed value (the budget for the attack), followed
by recomputing the saliency map, until the prediction has changed to a target class.
The adversarial images produced by JSMA are subtle and effective for attacks, but
they still require an excessive amount of time to compute.

The fast gradient sign method (FGSM) [77] has been introduced as a computationally
inexpensive, but effective alternative to JSMA. FGSM explores the gradient direction
of the cost function and introduces a fixed amount of perturbation to maximize that
cost. In practice, the examples produced by this attack are more easily detectable
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and require a bigger distortion to achieve misclassification than those obtained
from JSMA. An iterative version of FGSM, where a smaller perturbation is applied
multiple times, was introduced by [103].

Instead of using a fixed attack budget as for the last two methods, DeepFool [139]
was the first method to compute and apply the minimal perturbation necessary
for misclassification under the L2 norm. The method performs iterative steps on
the adversarial direction of the gradient provided by a locally linear approximation
of the classifier. Doing so, the approximation is more accurate than FGSM and
faster than JSMA, as all the pixels are simultaneously modified at each step of
the method, but its iterative nature makes DeepFool computationally expensive.
In [137, 138], the authors extend DeepFool in order to craft a universal perturbation
to be applied indifferently to any instance: a fixed distortion is computed from
a set of inputs, allowing to maximize the predictive error of the model on that
sample. The perturbation is computed by a greedy approach and needs multiple
iterations over the given sample before converging. To the extent where the sample
is representative to the data distribution, the computed perturbation has good
chances of achieving misclassification on unseen samples as well.

One method aiming to compute good approximations of Problem (B.1) while keeping
the computational cost of perturbing examples low has been proposed in [38]. The
authors cast the formulation of [179] into a more efficient optimization problem,
which allows them to craft effective adversarial samples with low distortion. They
define three similar targeted attacks, based on different distortion measures: L2, L0

and L∞ respectively. In practice, even these attacks are computationally expensive.

If it is difficult to find new methods that are both effective in jeopardizing a model
and computationally affordable, defending from adversarial attacks is even a harder
task. On one hand, a good defense should harden a model to any known attack
and, on the other hand, it should not compromise the discriminatory power of the
model. In the following paragraph, we report the most effective defenses proposed
for tackling adversarial examples.

Defenses A common technique for defending a model from adversarial examples
consists in augmenting the training data with perturbed examples (technique
known as ‘adversarial training‘ [179]) by either feeding a model with both true and
adversarial examples or learning it using the modified objective function:

Ĵ(θ,x, y) = αJ(θ,x, y) + (1− α)J(θ,x+ ∆x, y)

with J the original loss function. The aim of such defense is to increase the model’s
robustness in specific directions (of the adversarial perturbation) by ensuring that
it will predict the same class for the true example and its perturbations along those
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directions. In practice, the additional instances are crafted for the considered model
using one or multiple attack strategies, such as FGSM [77], DeepFool [139] and
virtual adversarial examples [136].

However, adversarially training a model is effective only on adversarial examples
crafted on the original model, which is an improbable situation considering that
an attacker might not have access to exactly the same model for computing the
perturbations. Additionally, adversarial training has been proved to be easily
bypassed through a two-step attack [185], which first applies a random perturbation
to an instance and then performs any classical attack technique. The success of this
new attack, and of black-box attacks in general, is due to the sharpness of the loss
around the training examples: if smoothing the loss in few adversarial directions
makes ineffective gradient-based attacks on those directions, it also makes the loss
sharper in the other directions, leaving the model more vulnerable through new
attacks.

Unlike adversarial training, a different family of defenses aims to increase the
robustness of deep neural networks to adversarial examples independently of the
attack. Among these attack-agnostic techniques, we find defensive distillation [36,
150, 152], which hardens the model in two steps: first, a classification model is
trained and its softmax layer is smoothed by division with a constant T ; then, a
second model is trained using the same inputs, but instead of feeding it the original
labels, the probability vectors from the last layer of the first model are used as soft
targets. The second model is then used for future deployment. The advantage of
training the second model with this strategy is that it makes for a smoother loss
function. It has been shown in [201] that a similar behavior can be obtained at
a cheaper cost by training a model using smoothed labels. This technique, called
label smoothing, involves converting class labels into soft targets (value close to 1 for
the target class and the rest of the weight distributed on the other classes) and use
these new values for training the model instead of the true labels. As a consequence,
one saves the needs to train an additional model as for defensive distillation.

Another model hardening technique is feature squeezing [210, 211]. Its reduces the
complexity of the representation of the data so that the adversarial perturbations
disappear due to low sensitivity. The authors propose two heuristics for dealing with
images: reducing color depth on a pixel level, that is encoding the colors with less
values, and using a smoothing filter over the image. As an effect, multiple inputs
are mapped to the same value, making the model robust to noise and adversarial
attacks. Although this has the collateral effect of worsening the accuracy of the
model on true examples, to the best of our knowledge, feature squeezing is the most
effective defense to adversarial attacks to date.

A different approach for protecting models against adversarial attacks are detection
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systems. To this end, a certain number of directions have been explored, such as
performing statistical tests [79], using an additional model for detection [76, 132]
or applying dropout [173] at test time [62]. However, with adversarial examples
being relatively close to the original distribution of the data, it has been shown that
many detection methods can be bypassed by attackers [37].

As we have described, defending against adversarial examples is not an easy task,
and the existing defense methods are only able to increase model robustness in
certain settings and to a limited extent. With these aspects in mind, we now move
on to presenting the proposed defense method.

B.3 Efficient defenses

In this section, we start by introducing the threat model we consider, before
presenting the two aspects of our contribution.

Adversary model Attackers can be formalized depending on their degree of
knowledge, the ways in which they can tamper with the system, as well as the
expected reward. For the purpose of our contribution, modeling the reward is not
required. In this paper, we consider attackers that only have access to test data and,
optionally, the trained model. They are thus unable to tamper with the training
sample, unlike in other contexts, such as learning with malicious error [94]. We
address different settings, depending on the degree of knowledge of the adversary.
The attacker can gain access to information about the learning algorithm, which
can include only the architecture of the system or values of the parameters as
well, the feature space and the data which was used for training. Of course, from
the perspective of the attacker, the white-box setup is the most advantageous,
making the crafting easier. A good defense method should be able to sustain the
strongest type of attack achievable in practice. On the other hand, it has been
shown that in some cases a black-box attack, when the attacker only has access
to the input and output of the model, achieves better results than its white-box
counterpart [149]. We thus consider both black-box and white-box attacks when
evaluating our method.

B.3.1 Bounded RELU

We now introduce the use of the bounded RELU (BRELU) [121] activation function
for hedging against the forward propagation of adversarial perturbation. Activation
functions present in each node of a deep neural network amplify or dampen a signal
depending on the magnitude of the input received. Traditional image classification
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models use Rectified Linear Units which are known to learn sparse representations
for data [74], thereby easing the training process. Recall that a RELU operation
squashes negative inputs to zero, while propagating all positive signals. Given the
arrangement of nodes in a DNN, inputs received by a node in one layer depend on
the outputs of the nodes from the previous layers of the architecture. Naturally,
with unbounded units like RELU, a small perturbation in the input signal can
accumulate over layers as a signal propagates forward through the network. For
an adversarial perturbation, this can potentially lead to a significant change in
the output signal for an incorrect class label. This would be further amplified by
the softmax operation in the final layer of a classification network. To curtail this
phenomenon, we propose the use of the bounded RELU activation function, defined
as follows:

ft(x) =


0, x < 0
x, 0 ≤ x < t

t, x ≥ t.

The parameter t defines the cut-off point where the function saturates. In practice,
it should be set with respect to the range of the inputs. Notice that a value too
small for t would prevent the forward propagation of the input in the network,
reducing the capacity of the model to perform well. On the other hand, too big a
value will perpetuate the same behavior as RELU.

To theoretically prove the interest of this simple modification in the architecture, we
compare the additive stabilities of a neural network with RELU activations against
BRELU activations, following [179]. For a model using RELU, the output difference
between an original point and its perturbation can be upper bounded as follows

∀x, ∆x ||F (x)− F (x+ ∆x)|| ≤M ||∆x||

with M =
∏L
j=1Mj the product of the Lipschitz constants of each layer. On the

contrary, the output difference in a model with BRELU has a tighter bound for
a small enough t and, most importantly, a bound independent from the learned
parameters of the layers:

∀x, ∆x ||F (x)− F (x+ ∆x)|| ≤ t||1||.

Employing BRELU activation functions, then, improves the stability of the network.

B.3.2 Gaussian Data Augmentation

The intuition behind data augmentation defenses such as adversarial training is
that constraining the model to make the same prediction for a true instance and its
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slightly perturbed version should increase its generalization capabilities. Although
adversarial training enhances the model’s robustness to white-box attacks, it fails
to protect effectively from black-box attacks [185]. This is because the model
is strengthened only in few directions (usually, one per input sample), letting it
be easily fooled in all the other directions. Moreover, there is no mechanism for
preventing the model from making confident decisions for uncertain regions, i.e.
parts of the input space not represented by the data samples. Instead, augmenting
the training set with examples perturbed using Gaussian noise, as we propose in
this paper, on one hand allows to explore multiple directions and, on the other,
smooths the model confidence. While the former property can be achieved through
any kind of noise (e.g. uniform noise), the latter is peculiar to using a Gaussian
distribution for the perturbations: the model is encouraged to gradually decrease
its confidence moving away from an input point.

We thus propose a new formulation of the problem of learning classifiers robust to
adversarial examples:

min
θ

E
(x,y)∼D

E
∆x∼N (0,σ2)

J(θ,x+ ∆x, y),

where σ indicatively corresponds to the acceptable non-perceivable perturbation.
The aim is to enforce the posterior distribution p(y|x) to follow N (x,σ2). This
formulation differs from [128] in considering all possible local perturbations (and
not only the one with the maximal threatening power) and in weighing them with
respect to their magnitude.

In the rest of the paper, we will solve a Monte Carlo approximation of the solution
of the previous problem, by sampling N perturbations per instance from N (0,σ2):

min
θ

E
(x,y)∼D

1
N

N∑
i=1

J(θ,x+ ∆xi, y)

that converges almost surely to the true one for N → ∞. Let’s note µ =

E∆x∼N (0,σ2)J(θ,x + ∆x, y). After Hoeffding’s inequality, the amount of devia-
tion of the empirical approximation from the theoretical one can be quantified for
all t ≥ 0 as

Pr
∣∣∣∣∣∣ 1
N

N∑
i=1

J(θ,x+ ∆xi, y)− µ

∣∣∣∣∣∣ ≥ t

 ≤ exp
(
−t

2N

2σ2

)
.

To prove the benefits of the proposed Gaussian data augmentation (GDA) on the
robustness of a model, we carry out a study on the classification boundaries and
the confidence levels of a simple multi-layer network trained on two toy datasets
augmented through different techniques. In the first dataset (Figure B.2a), the
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two classes are placed as concentric circles, one class inside the other. The second
dataset (Figure B.2b) is the classic example of two half-moons, each representing
one class. For each original point x of a dataset, we add one of the following artificial
points x′ (all of them clipped into the input domain):

1. Adversarial example crafted with Fast Gradient Sign Method with L2-norm
and ε = 0.3;

2. Virtual adversarial example (VAT) with ε = 0.3;

3. Adversarial example crafted with Jacobian Saliency Method with feature
adjustment θ = 0.1;

4. Perturbed example drawn from the Uniform distribution centered in x (x′ ∼
U(x));

5. Perturbed example drawn from a Gaussian distribution centered in x, with
standard deviation σ = 0.3 (x′ ∼ N (x,σ2)).

GDA helps smoothing the model confidence without affecting the accuracy on the
true examples (sometimes even improving it), as shown in Figure B.2. Notice how
the change in the value of the loss function is smoother for GDA than for the other
defense methods. We also compare against augmentation with uniformly generated
random noise, as was previously done in [136]. In this case as well, the GDA makes
up for smoother variations.

These experiments confirm that, even though perturbing the true instances with
random noise does not produce successful attacks [201], it is highly effective when
deployed as a defense. Moreover, from a computational point of view, this new
technique comes at practically no cost: the model does not require retraining, as
opposed to adversarial training or defensive distillation, and drawing points from a
Gaussian distribution is considerably cheaper than crafting adversarial examples.

B.4 Experiments

In this section, we discuss the experiments conducted for a closer look at the
proposed defense methods, and contrast their performance against other defenses
under multiple attacks. Following a brief description of the experimental protocol,
we detail the results obtained for an extensive class of setups. The various settings
and evaluation metrics are motivated to acquire better insights into the workings of
adversarial misclassification and into the robustness of methods.
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(a) Concentric circles toy dataset.
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(b) Half-moons toy dataset.
Figure B.2 – We compare state-of-the-art data augmentation techniques for hardening
learning models, in this case a soft-max neural network with two dense hidden layers and
RELU activation function. The decision boundary can be identified through the colors
and the confidence level contours are marked with black lines. The original points and the
additional ones (smaller) are drawn with the label and color corresponding to their class.
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B.4.1 Setup

Datasets Our experiments are performed on two standard machine learning
datasets: MNIST [114] and CIFAR10 [100]. MNIST contains 70,000 samples of
black and white 28×28 images, divided into 60,000 training samples and 10,000
test samples. Each pixel value is scaled between 0 and 1, and the digits are the
10 possible classes. CIFAR10 contains 60,000 images of size 32×32 with three
color channels, their values also scaled between 0 and 1. The dataset is split into
50,000 training images and 10,000 test ones, all from 10 classes. We consider two
types of network architectures: simple convolutional neural nets (CNN) [112] and
convolutional neural nets with residuals (ResNet) [85]. The CNN is structured as
follows: Conv2D(64, 8×8) – Conv2D(128, 6×6) – Conv2D(128, 5×5) – Softmax(10).
The ResNet has the following layers with an identity short-cut between layer 2
and 6: Conv2D(64, 8×8) – Conv2D(128, 6×6) – Conv2D(64, 1×1) – Conv2D(64,
1×1) – Conv2D(128, 1×1) – MaxPooling(3×3) – Softmax(10). For both models,
the activation function used is RELU, except when specified otherwise.

Methods We use the following attacks to craft adversarial examples, in view of
comparing the respective capacities of defense models:

1. Fast Gradient Sign Method (FGSM) with distortion size ε ranging from 0.01
to 1, or with an iterative strategy determining the minimal perturbation
necessary to change predictions;

2. FGSM applied after a preliminary step of adding Gaussian noise (within a
range of α = 0.05); the random noise applied in the first step is deducted
from the budget of the FGSM attack; we call this heuristic Random + FGSM;

3. Jacobian Saliency Map Attack (JSMA) with the default parameters from the
authors’ code: γ = 1, θ = 0.1;

4. DeepFool with a maximum of 100 iterations;

5. The L2 attack from [38] (called C&W) with the default parameters from the
authors’ code and a confidence level of 2.3.

We compare the following defense methods:

1. Feature squeezing (FS), reducing the color depth to 1 bit for MNIST and 3
bits for CIFAR10, as the authors suggested in [210];

2. Label smoothing (LS), with the weight of the true label set to 0.9;
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3. Adversarial training (AT) with examples crafted using FGSM with ε = 0.3
for MNIST and ε = 0.05 for CIFAR10;

4. Virtual adversarial training (VAT) with ε = 2.1 as indicated in [136];

5. Gaussian Data Augmentation generating ten noisy samples for each original
one, with standard deviation σ = 0.3 for MNIST and σ = 0.05 for CIFAR10;
when BRELU (t = 1) is used as activation function, we call this method GDA
+ BRELU, otherwise GDA + RELU.

Notice that we do not compare directly against defensive distillation, but consider
label smoothing instead, for the reasons given in Section B.2.

Measuring defense efficiency Most experimental studies evaluate the perfor-
mance of defense strategies on the basis of their effect on classification accuracy.
However, we believe it is also vital to measure the robustness of the obtained models
to an attack [139], for instance by quantifying the average distortion introduced
during adversarial generation. These metrics provide better insights into the local
behavior of defenses. We compute three such metrics in our experiments: the
empirical robustness (as measured by minimal perturbation), the distance to the
training set and the loss sensitivity to pertubations. For a model F , the robustness
is defined as:

ρF = E(x,y)∼D
∆x

||x||2 + ε
, (B.2)

where ∆x amounts to the L2 perturbation that is required for an instance x in
order for the model F to change its prediction under a certain attack. Here, ε is an
extremely small constant allowing for the division to be defined. Intuitively, robust
defenses require larger perturbations before the prediction changes. We estimate
robustness by its empirical value computed on the available sample.

Training set distance offers a complementary viewpoint to robustness. In its
attempt to quantify the dissimilarity between two sets, namely training data and
adversarial images, this metric measures the average nearest-neighbour distance
between samples from the two sets. Consequently, a larger value of this metric for
adversarial images obtained by minimal perturbation supports the robustness of a
defense strategy. Furthermore, this metric could also serve as a detection tool for
adversarial attacks.

One of the main features of the proposed method is the smoothing effect on the
learned model. We propose to quantify this smoothness by estimating the Lipschitz
continuity constant ` of the model, which measures the largest variation of a function
under a small change in its input: the lower the value, the smoother the function.
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In practice, we are unable to compute this theoretical metric. We propose instead
to estimate `F by local loss sensitivity analysis [101], using the gradients of the loss
function with respect to the M input points in the test set:

`F =
1
M

M∑
i=1

∣∣∣∣∣
∣∣∣∣∣∂J(θ,xi, yi)∂xi

∣∣∣∣∣
∣∣∣∣∣
2

.

B.4.2 Comparison Between Architectures

In this experiment, we aim to show the impact of the type of deep network archi-
tecture against adversarial attacks. Namely, we compare CNN against ResNet, and
RELU against BRELU activations respectively, under attacks crafted with FGSM.
As a matter of fact, we would like to reject the hypothesis of vanishing units, for
which the misclassification of the adversarial examples would be caused by the
deactivation of specific units and not by the activation of the wrong ones. If that
was the case, (i) getting residuals from the previous layers as in ResNet would result
in higher robustness and (ii) using BRELU activation functions would decrease the
performances of the model on adversarial examples. However, as Figure B.3 shows,
ResNet does not sustain attacks better than CNN, suggesting that the accumulation
of errors through the neural network is the main cause of misclassification. Notice
that CNN + BRELU performs best for a distortion of up to ε = 0.3, which has been
suggested to be the highest value for which an FGSM attack might be undetectable.

Table B.1 – Accuracy (%) on MNIST for FGSM attack transfer on different architectures
(ε = 0.1, best result in bold, second best in gray).
XXXXXXXXXXXXXX
Crafted on

Tested on CNN + RELU CNN + BRELU ResNet + RELU ResNet + BRELU

CNN + RELU 73.88 90.16 89.49 88.26
CNN + BRELU 94.00 87.74 90.73 90.02
ResNet + RELU 94.46 93.65 61.88 75.94
ResNet + BRELU 94.21 93.91 78.70 58.51

We now analyze the same architectures for adversarial samples transferability:
attacks crafted on each architecture with FGSM are applied to all the models
(see Table B.1). When the source and the target are the same, this makes for a
white-box attack; otherwise, it is equivalent to a black-box setting. As is expected,
each architecture is most fooled by its own adversarial examples. Additionally,
ResNet is overall more affected by adversarial examples transferred from different
architectures, while the CNN retains an accuracy higher than 90% in all black-box
attacks, even when the only change in the architecture is replacing RELU with
BRELU. This makes the case once more for noise accumulation over the layer
rendering models vulnerable to adversarial samples. Considering the results of the
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Figure B.3 – Accuracy on FGSM white-box attack with respect to ε for different architectures
on MNIST.

ResNet model, we perform the remaining experiments only on the simple CNN
architecture.

B.4.3 Impact of the Attack Distortion

We now study the impact of the attack distortion on the CNN model trained with
different defenses. To this end, we use FGSM and Random + FGSM as attacks
and plot the results in Figures B.4 and B.5. Note that for CIFAR10, we only show
the results for 0 ≤ ε ≤ 0.3, as for bigger values, the accuracies are almost constant.
The first observation is that label smoothing not only fails to strengthen the model
in both setups, but it even worsens its robustness to adversarial attacks. Also,
adversarial training seems ineffective even against white-box attacks, contrary to
the observations in [185]. The result is not surprising, as the model is enforced on
specific directions and probably loses its generalization capabilities. We explain
this only apparent contradiction by pointing out the difference in the definitions
of a white-box attack: for [185], white-box adversarial means examples crafted on
the original model, without defenses; for us, they are crafted on the model trained
through adversarial training. For MNIST, the three defenses that consistently
perform the best are feature squeezing, virtual adversarial training and Gaussian
data augmentation. However, if we focus on the results for ε < 0.3 (which are the
most significant, as big perturbations are easily detectable and result in rubbish
examples), VAT is not as effective as the other two methods. On CIFAR10, small
perturbations easily compromise the accuracy of the models even when defended by
the methods the most efficient on MNIST, notably feature squeezing and virtual
adversarial training. Moreover, using these last two defenses seems to degrade
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(a) White-box FGSM.

(b) Black-box FGSM.

(c) White-box Random + FGSM.
Figure B.4 – Comparison of different defenses against white-box and black-box attacks
on MNIST. For black-box attacks, the adversarial examples are crafted using the ResNet
model, without any defense.
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(a) White-box FGSM.

(b) Black-box FGSM.

(c) White-box Random + FGSM.
Figure B.5 – Comparison of different defenses against white-box and black-box attacks on
CIFAR10. For black-box attacks, the adversarial examples are crafted using the ResNet
model, without any defense. Note that the adversarial examples crafted with Random +
FGSM and 0 < ε ≤ 0.05 correspond to Gaussian noise for α = 0.05.
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the performances on true examples and to fail in strengthening the model from
black-box and white-box attacks alike.

In conclusion, our defenses outperform state-of-the-art strategies in terms of accuracy
on these two datasets.

B.4.4 Defense Performance under Multiple Metrics

As discussed previously, the accuracy is not a sufficient measure for evaluating the
performance of a model, especially in the case of adversarial samples: an attack
might make for an incorrect prediction with respect to the original label in most cases,
but if the adversarial examples cannot be mistaken as legitimate inputs, the attack
is arguably not effective. For this reason, we propose to evaluate the robustness of
defenses, as well as the shift of adversarial examples with respect to the clean data
distribution. The adversarial examples are crafted incrementally using FGSM with
small perturbations, and the algorithm stops when the prediction changes. The
results in Table B.2 show that GDA with RELU as activation function performs
best in terms of accuracy, being on a par with VAT. The robustness indicates the
average amount of minimal perturbation necessary to achieve misclassification. This
measure proves that both versions of the proposed defense yield a more robust model,
potentially making the adversarial examples visually detectable. It is interesting to
notice that feature squeezing and label smoothing actually decrease the robustness of
the model. The last column in the table measures the average (Euclidean) distance
of adversarial samples to the closest training point: a higher values indicates a
larger shift between the two distributions. Here as well, GDA with both setups
obtains much better results than the other defenses. Coupled with the robustness
results, this metric confirms that one cannot have resistance to adversarial samples
without an overall robustness of models, which calls for generic model reinforcement
methods like the one proposed in this paper. Table B.3 presents the measure of
the sensitivity of the loss function under small variations for all studied defense
methods. Gaussian augmentation provides the smoothest model with the RELU
activation. Notice that feature squeezing and label smoothing both induce higher
gradients in the model, while the other defenses enforce a level of smoothness close
to the one of the original unprotected model.

B.4.5 Transferability of Adversarial Samples

We now compare the performance of the proposed method against other defenses
in a black-box setting, to account for the adversarial examples transferability
phenomenon. To this end, all adversarial examples are crafted on the ResNet
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Table B.2 – White-box attack on adversarial examples from FGSM with minimal perturba-
tion (best result in bold, second best in gray).

Defense Accuracy Robustness Training set distance

CNN 52.07 0.202 3.90
Feature squeezing 35.61 0.143 3.01
Label smoothing 37.06 0.152 3.18
FGSM adversarial training 56.44 0.226 4.33
VAT 73.32 0.308 6.64
GDA + RELU 73.96 0.440 10.36
GDA + BRELU 69.56 0.471 9.31

Table B.3 – Local loss sensitivity analysis for defenses on MNIST (best result in bold,
second best in gray).

Model Local sensitivity

CNN 0.0609
Feature squeeze 0.1215
Label smoothing 0.2289
FGSM adversarial training 0.0748
VAT 0.0741
GDA + RELU 0.0244
GDA + BRELU 0.0753
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Table B.4 – Accuracy (%) for black-box attacks on MNIST (best result in bold, second
best in gray).
PPPPPPPPPPP
Defense

Attack FGSM Rand + FGSM DeepFool JSMA C&W

CNN 94.46 40.70 92.95 97.95 93.10
Feature squeezing 96.31 91.09 96.68 97.48 96.75
Label smoothing 86.79 20.28 84.58 95.86 84.81
FGSM adversarial training 91.86 49.77 85.91 98.62 97.71
VAT 97.53 74.35 96.03 98.26 96.11
GDA + RELU 98.47 80.25 97.84 98.96 97.87
GDA + BRELU 98.08 75.50 98.00 98.88 98.03

Table B.5 – Accuracy (%) for black-box attacks on CIFAR10 (best result in bold, second
best in gray).
PPPPPPPPPPP
Defense

Attack FGSM Rand + FGSM DeepFool JSMA C&W

CNN 51.55 57.22 77.76 76.85 77.79
Feature squeezing 52.98 61.83 73.82 73.28 73.75
Label smoothing 49.90 56.68 75.80 74.78 75.66
FGSM adversarial training 51.94 63.25 71.17 70.48 71.02
VAT 44.16 56.47 68.94 68.21 68.47
GDA + RELU 59.96 71.93 76.80 76.45 76.61
GDA + BRELU 55.65 69.43 74.97 74.73 74.78

model described previously, before being applied to the CNN model trained with
each of the defense methods. In the case of the FGSM attack, ε is set to 0.1.
Tables B.4 and B.5 present the classification accuracy obtained by the models. The
first line is the baseline, that is the CNN with no defense. For our method, we
consider GDA both with and without the use of BRELU. On MNIST, our methods
outperform the other defenses in most cases. Namely, notice that they obtain the
best performance under FGSM, VAT, DeepFool, JSMA and C&W attacks; this
difference is significant for FGSM, DeepFool and C&W. Random + FGSM has been
shown to be a stronger attack than one-step attacks; this is confirmed by the poor
performance of all defenses, except for feature squeezing. An interesting fact is that
using label smoothing degrades the performance of the model under the Random
+ FGSM attack when compared to the CNN with no defense. On CIFAR10, our
methods consistently make the model more robust than the other defenses.



178

B.5 Conclusion

Despite their widespread adoption, deep learning models are victims of uninter-
pretable and counterintuitive behavior. While numerous hypotheses compete to
provide an explanation for adversarial samples, their root cause still remains largely
unknown. The quest of understanding this phenomenon has turned into an arms
race of attack and defense strategies. Along with the drive for efficient and better
attacks, there is a parallel hunt for effective defenses which can guard against them.
Given this large ammo of strategies, practitioners are faced with a dire need for
attack-agnostic defense schemes which can be easily employed at their end.

This work proposed two such strategies which, used separately or combined, improve
the robustness of a deep model. We built on two intuitive hypotheses of error
accumulation and smoothness assumption, and proposed to impose two constraints:
first, on the architecture in the form of the bounded RELU activations, and second,
in the form of training with Gaussian augmented data. We demonstrated the
utility of this combined approach against the state-of-art attacks. Compared to
adversarial training based on an attack, our defense has the major advantage of
being computationally inexpensive; first, it only requires training one model, and
second, Gaussian noise has much lower computational cost than crafting adversarial
examples. The latter property allows us to explore a larger set of directions around
each input than adversarial training. The overall effect is obtaining a smoother,
more stable model, which is able to sustain a wide range of adversarial attacks. As
we have shown in the experimental section, we achieve this without compromising
on the original classification performance on clean input.
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Lipschitz Continuity of
Mahalanobis Distances and
Bilinear Forms

This Annex contains the technical report

Valentina Zantedeschi, Rémi Emonet, and Marc Sebban. Lipschitz continuity of
mahalanobis distances and bilinear forms. 2016.

Many theoretical results in the machine learning domain stand only for functions that
are Lipschitz continuous. Lipschitz continuity is a strong form of continuity that linearly
bounds the variations of a function. In this paper, we derive tight Lipschitz constants
for two families of metrics: Mahalanobis distances and bounded-space bilinear forms. To
our knowledge, this is the first time the Mahalanobis distance is formally proved to be
Lipschitz continuous and that such tight Lipschitz constants are derived.

C.1 Multi-variate Lipschitz continuity

A function is said Lipschitz continuous if it takes similar values on points that are
close. More precisely, the slope of the function is bounded by a constant that is
independent of the choice of points. This means that the variation of a function that
is Lipschitz continuous within a certain interval is small. The Lipschitz continuity
is a strong form of uniform continuity: for instance, a function that is Lipschitz
continuous is also continuous, but the reverse is not necessarily true. Let’s take
the example of the square function: x2 is continuous on Rd but it is not Lipschitz
continuous (the slope of x2 is not bounded).

We now consider the Lipschitz continuity for a function f : X 2 ⊂ Rd ×Rd → R.

Definition C.1 (Multi-variate Lipschitz continuity) A function f : X 2 ⊂ Rd×Rd → R

179



180

is said kp-lipschitz w.r.t. the norm ‖.‖p if ∀(x1,x2,x′1,x′2) ∈ X 4:

|f(x1,x2)− f(x′1,x′2)| ≤ kp

∥∥∥∥∥
(
x1
x2

)
−
(
x′1
x′2

)∥∥∥∥∥
p

. (C.1)

If f is differentiable on X 2 ⊂ Rd ×Rd and X 2 is a convex space, the best constant
kp, the characteristic Lipschitz coefficient, can be estimated considering the fact
that

kp = sup
x1,x2,x′1,x′2∈X

 |f(x1,x2)− f(x′1,x′2)|∥∥∥∥(x1
x2
)− (

x′1
x′2
)
∥∥∥∥
p

 =

= sup
x1,x2∈X

‖∇f(x1,x2)‖p . (C.2)

C.2 Derivation for particular functions

In this section, we analyze the Lipschitz continuity of two classic metric functions:
the Mahalanobis distance and the bilinear form. These two functions are largely
used in the field of Machine Learning, especially in Metric Learning.

C.2.1 Derivation for Mahalanobis-like Distances

We recall that the Mahalanobis distance of a pair (x1,x2) ∈ X 2 can be written
as dM (x1,x2) =

√
(x1 − x2)TM(x1 − x2) where M is some Positive Semi-Definite

matrix, whose coefficients can be optimized. By Def. C.1, the function dM : X 2 → R

is kp-lipschitz w.r.t. the norm ‖.‖p if ∀x1,x2 ∈ X , ‖∇dM (x1,x2)‖p can be bounded
by a constant kp, where

∇dM (x1,x2) =

(∂dM (x1,x2)
∂x1

∂dM (x1,x2)
∂x2

)

and, for this particular case:

∂dM (x1,x2)

∂x1
=

1
2
√
(x1 − x2)TM(x1 − x2)

∂

∂x1

(
(x1 − x2)

TM(x1 − x2)
)

=
1

2
√
(x1 − x2)TM(x1 − x2)

∂

∂x1

(
xT1 Mx1 − xT2 Mx1 − xT1 Mx2 + xT2 Mx2

)
(C.3)

=
2Mx1 −Mx2 −Mx2

2
√
(x1 − x2)TM(x1 − x2)

(C.4)

=
Mx1 −Mx2√

(x1 − x2)TM(x1 − x2)
=

M(x1 − x2)√
(x1 − x2)TM(x1 − x2)
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and, in the same way:

∂dM (x1,x2)

∂x2
=

M(x2 − x1)√
(x1 − x2)TM(x1 − x2)

.

In Eq. C.3 and C.4 we made use of the symmetry of the matrix M .

Lemma C.1 The Mahalanobis distance dM (x1,x2) is k-lipschitz w.r.t. the norm ‖.‖2,
with k =

√
2 ‖L‖2, where M = LTL, with L a lower triangular matrix.

Proof.

max
x1,x2∈X

‖∇dM (x1,x2)‖2

= max
x1,x2∈X

√√√√∥∥∥∥∥∂dM (x1,x2)

∂x1

∥∥∥∥∥
2

2
+

∥∥∥∥∥∂dM (x1,x2)

∂x2

∥∥∥∥∥
2

2

= max
x1,x2∈X

√√√√√√
∥∥∥∥∥∥ M(x1 − x2)√

(x1 − x2)TM(x1 − x2)

∥∥∥∥∥∥
2

2

+

∥∥∥∥∥∥ M(x2 − x1)√
(x1 − x2)TM(x1 − x2)

∥∥∥∥∥∥
2

2

= max
x1,x2∈X

√√√√√√2

∥∥∥∥∥∥ M(x1 − x2)√
(x1 − x2)TM(x1 − x2)

∥∥∥∥∥∥
2

2

= max
x1,x2∈X

√√√√√√2

∥∥∥∥∥∥ LTL(x1 − x2)√
(x1 − x2)TLTL(x1 − x2)

∥∥∥∥∥∥
2

2

(C.5)

= max
x1,x2∈X

√√√√√√2

∥∥∥∥∥∥ LT (L(x1 − x2))√
(L(x1 − x2))TL(x1 − x2)

∥∥∥∥∥∥
2

2

= max
x1,x2∈X

√√√√2
∥∥∥∥∥LT (L(x1 − x2))

‖L(x1 − x2)‖2

∥∥∥∥∥
2

2

≤ max
x1,x2∈X

√√√√2 ‖LT‖2

∥∥∥∥∥ (L(x1 − x2))

‖L(x1 − x2)‖2

∥∥∥∥∥
2

2
(C.6)

≤
√

2
∥∥∥LT ∥∥∥

2
= k. (C.7)

In Eq. C.5 we applied the Cholesky decomposition M = LTL, the bound in C.6 is
due to the Cauchy-Schwarz inequality and in Eq. C.7

∥∥∥∥ (L(x1−x2))
‖L(x1−x2)‖2

∥∥∥∥
2
= 1 because

it is a normalized vector.
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C.2.2 Derivation for Bilinear Forms

We recall that the bilinear form of a pair (x1,x2) is computed as dM (x1,x2) =

xT1 Mx2, where M is a generic matrix that can be optimized. Then:

∂dM (x1,x2)

∂x1
=

∂

∂x1

(
xT1 Mx2)

)
= Mx2

∂dM (x1,x2)

∂x2
=

∂

∂x2

(
xT1 Mx2)

)
= MTx1.

Lemma C.2 The bilinear similarity dM (x1,x2) = xT1 Mx2 is k-lipschitz w.r.t. the
norm ‖.‖2, with k =

√
2 ‖M‖2R, when ‖x‖2 ≤ R ∀x ∈ X .

Proof.

max
∀x1,x2∈U

‖∇dM (x1,x2)‖2 = max
∀x1,x2∈U

√√√√∥∥∥∥∥∂dM (x1,x2)

∂x1

∥∥∥∥∥
2

2
+

∥∥∥∥∥∂dM (x1,x2)

∂x2

∥∥∥∥∥
2

2

= max
∀x1,x2∈U

√
‖Mx2‖22 + ‖MTx1‖

2
2

≤
√

2 ‖M‖2R = k. (C.8)

C.3 Conclusion

In this paper, we recalled a method for proving the Lipschitz continuity and for
finding a tight Lipschitz constant of multivariate differentiable functions. Using
this approach, we computed tight Lipschitz constants for two families of metrics
that are heavily used, especially in metric learning. We have shown that the
Mahalanobis distance is Lipschitz continuous and has a constant of

√
2 ‖L‖2 (where

L is the square root of the correlation matrix). We have also shown that the bilinear
form xMy is Lipschitz continuous with a constant

√
2 ‖M‖2R (when the space is

bounded by R).

Many theoretical results in the machine learning domain rely on Lipschitz con-
tinuity and depend on the Lipschitz constants. For example, the generalization
bounds obtained in the context of the uniform stability (see [17]) can be derived by
constraining the studied functions to be Lipschitz continuous and the tightness of
those bounds depends on the value of the Lipschitz constant. The derivations from
this paper have been originally developed to derive theoretical bounds for [219]. We
believe these results can also be used to derive tighter theoretical bounds in other
domains of machine learning.
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Appendix of Chapter 4

D.1 Bound of product space curvature

We first recall our notations. For any k ∈ [K], we letMk = {αk ∈ Rn :
∥∥∥αk∥∥∥1

≤ β}
and denote byM =M1× · · ·×MK our feasible domain in (D.1). For convenience,
we will use α = [α1, . . . ,αK ] ∈ (Rn)K to denote the concatenation of the local
classifiers {αk}Kk=1 and refer to the objective function (D.1) as f(α). We also denote
by v[k] ∈M the zero-padding of any vector vk ∈Mk.

We recall our joint optimization problem over the classifiers α1, . . . ,αK :

min
‖α1‖1≤β,...,‖αK‖1≤β

f(α1, . . . ,αK) =
K∑
k=1

Dkck log
(

1
mk

mk∑
i=1

exp (−(Akαk)i)
)

+
µ

2

K∑
k=1

k−1∑
l=1

Wkl‖αk − αl‖2. (D.1)

Lemma D.1 For Problem (D.1), we have C⊗f ≤ 4β2∑K
k=1(Dkck

∥∥∥Ak∥∥∥2
1
+ µDk).

Proof. For the following proof, we utilize two key concepts of functional analysis: the
Lipschitz continuity and the diameter of a compact space. A function f : X → R is
L-lipschitz w.r.t. the norm

∥∥∥.∥∥∥
1
if ∀(x,x′) ∈ X 2:

|f(x)− f(x′)| ≤ L
∥∥∥x− x′∥∥∥

1
. (D.2)

The diameter of a compact normed vector space (M, ‖.‖) is defined as:

diam‖.‖(M) = sup
x,x′∈M

∥∥∥x− x′∥∥∥ . (D.3)

We recall the formulation of the partial gradient

∇kf(α) = −Dkckwk(α)
TAk + µ

Dkα[k] −
∑
l

Wklα[l]

 ,

where we denote wk(α) =
exp(−Akα[k])∑mk
i=1 exp(−Akα[k])i

.

We bound the Lipschitz constant of wk(α) by bounding its first derivative:∥∥∥∇k(wk(α))∥∥∥1
=
∥∥∥(−wk(α) +wk(α)

2)TAk
∥∥∥

1

≤
∥∥∥Ak∥∥∥1

. (D.4)
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Eq. (D.4) is due to the fact that
∥∥∥wk∥∥∥1

≤ 1 and wk ≥ 0. It is then easy to
see that considering any two vectors α,α′ ∈ M differing only in their k-th block
(α[l] = α′[l] ∀l 6= k), the Lipschitz constant of the partial gradient ∇kf in (D.4) is
bounded by Lk = Dkck‖Ak‖21 + µDk.

We can easily bound the diameter of the subspaceMk = {αk ∈ Rn :
∥∥∥αk∥∥∥1

≤ β}
as follows:

diam‖.‖1(Mk) = maxαk,α′k∈Mk

∥∥∥αk − α′k∥∥∥1
= 2β.

Finally, we obtain Lemma D.1 by combining the above results:

C⊗f =
K∑
k=1

Ckf ≤
K∑
k=1

Lk diam2
‖.‖1(M

k) = 4β2∑K
k=1(Dkck

∥∥∥Ak∥∥∥2
1
+ µDk). (D.5)
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Appendix of Chapter 5

E.1 Hilbert space H

We recall the definition of Hilbert Space.

Definition E.1 (Hilbert Space) A real vector space V over R is a Hilbert Space if:

1. V is a real inner product space;

2. V is a complete metric space with respect to the distance function induced by
its inner product.

Theorem E.1 The spaceH resulting by a transformation µL(x) = [µ(x, l1), ...,µ(x, lL)],
with µ : X 2 → R of an Hilbert space X is also an Hilbert Space if L 6= 0.

Proof. If L 6= 0, < µL(),µL() >= µL()µL()
T is an inner product, as:

1. < µL(),µL() > is linear: ∀a, b ∈ R and ∀x1,x2,x3 ∈ X

< aµL(x1) + bµL(x2),µL(x3) >

=
(
aµL(x1) + bµL(x2)

)
µL(x3)

T

= aµL(x1)µL(x3)
T + bµL(x2)µL(x3)

T

= a < µL(x1),µL(x3) > +b < µL(x2)µL(x3) >;

2. < µL(),µL() > is symmetric: ∀x1,x2 ∈ X

< µL(x1),µL(x2) >=< µL(x2),µL(x1) >;

3. < µL(),µL() > is always non-negative and null only for x = 0: ∀x ∈ X

< µL(x),µL(x) >=
L∑
p=1

µ(x, p)2 ≥ 0

and < µL(x),µL(x) >= 0 iff x = 0 as L 6= 0.
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In particular, the space generated by µ(x1,x2) = xT1 x2 or µ(x1,x2) =

exp(−‖x1−x2‖22
σ ) is an Hilbert Space.

E.2 Lagrangian dual problem

The L3-SVMs optimization problem takes the following form:

arg min
θ,b,ξ

1
2 ‖θ‖

2
F +

c

m

m∑
i=1

ξi

s.t. yi
(
θki.µL(xi)

T + b
)
≥ 1− ξi ∀i = 1..m

ξi ≥ 0 ∀i = 1..m

with µL(.) = [µ(., l1), ...,µ(., lL)] the projection from the input space X to the
landmark space H.

The Lagrangian dual problem of the previous formulation is obtained by maximizing
the corresponding Lagrangian w.r.t. its Lagrangian multipliers. The derived problem
is a Quadratic Programming problem that can be solved by common optimization
techniques and that allows one to make use of the kernel trick. The Lagrangian
takes the following form:

L(θ, b, ξ,α, r) = 1
2 ‖θ‖

2
F +

c

m

m∑
i=1

ξi−
m∑
i=1

riξi−
m∑
i=1

αi
(
yi
(
θki.µL(xi)

T + b
)
+ ξi − 1

)
where α ∈ Rm and r ∈ Rm are the positive Lagrangian multipliers. Let’s consider
the fact that:

max
α,r min

θ,b,ξ
L(θ, b, ξ,α, r) ≤ min

θ,b,ξ
max
α,r L(θ, b, ξ,α, r)

where the left term corresponds to the optimal value of the dual problem and the
right one to the primal’s one. The dual and the primal problems have the same
value at optimality if the Karush-Kuhn-Tucker (KKT) conditions are not violated
(see [32]).

By setting the gradient of L w.r.t. θ, b and ξ to 0, we find the saddle point
corresponding to the function minimum:

∇θkpL(θ, b, ξ,α, r) = θkp −
m∑

i=1|ki=k
αiyiµ(xi, lp)
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∇bL(θ, b, ξ,α, r) = −
m∑
i=1

αiyi

∇ξiL(θ, b, ξ,α, r) = c

m
− αi − ri

which give

θkp =
m∑

i=1|ki=k
αiyiµ(xi, lp) (E.1)

m∑
i=1

αiyi = 0 (E.2)

αi =
c

m
− ri (E.3)

We can now write the QP dual problem by replacing θ by its expression (E.1) and
simplifying following (E.2) and (E.3):

max
α
−1

2

m∑
i=1|ki=k

m∑
j=1|kj=k

αiαjyiyjµL(xi)µL(xj)
T +

m∑
i=1

αi

s.t. 0 ≤ αi ≤
c

m
∀i = 1..m

m∑
i=1

αiyi = 0 ∀i = 1..m

which is concave w.r.t. α.

We need the following two additional constraints in order to respect the KKT
conditions which guarantee that the optimal value found by solving the dual
problem corresponds to the optimal value of the primal:

αi
(
yi
(
θki.µL(xi)

T + b
)
− 1 + ξi

)
= 0 ∀i = 1..m

riξi = 0 ∀i = 1..m

Once the Lagrangian dual problem solved, the characteristic vector θ and offset b
of the optimal margin hyperplane can be retrieved by means of the support vectors,
i.e. the instances whose corresponding αi are strictly greater than 0:

θkp =
m∑

a=1|ka=k
αayaµ(xa, lp)

b = ya − θka.µL(xa)

and the new instances can be classified :

y(x) = sign
(
θki.µL(xi)

T + b
)

.
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E.3 Graphical representation of variable depen-
dencies

Figures E.1 through E.3 graphically illustrates the variables involved in the different
optimization problems that are solved by the local SVM approaches and L3-SVMs.
In these graphs, a node represents a variable (or a set of) and a link show a direct
dependency between the variables, i.e., one variable is directly involved in the
computation or the estimation of the other.

X1 X2 X3 X4 X5 X6 X7 X8 ... X97 X98 X99 ←− clusters

θ1 θ2 ... θK

Figure E.1 – Variable dependencies when learning one SVM per cluster (baseline used in
Clustered SVM [80]).

X1 X2 X3 X4 X5 X6 X7 X8 ... X97 X98 X99 ←− clusters

θ1 θ2 ... θK

θ ←− global regularization

Figure E.2 – Variable dependencies for Clustered SVM [80], where a common global
regularization is used.

b ←− common bias

L ←− landmarks

X1

µL,1

X2

µL,2

X3

µL,3

X4

µL,4

X5

µL,5

X6

µL,6

X7

µL,7

X8

µL,8

... X97 X98 X99

... µL,97 µL,98 µL,99

←− clusters

θ1 θ2 ...
θK

Figure E.3 – Variable dependencies for our model, L3-SVMs, where one SVM is learned
per cluster but the local models interact through a common bias and L, the set of landmarks.
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F.1 Introduction

L’apprentissage machine est un domaine de l’intelligence artificielle qui englobe
les algorithmes permettant à un ordinateur d’effectuer une tâche sans être pro-
grammé manuellement. En général, la structure et les caractéristiques de l’ensemble
d’exemples recueillis sont analysées afin d’extrapoler de nouvelles informations,
d’estimer la probabilité de certains événements et de prendre des décisions en
conséquence. Une tâche typique de l’apprentissage machine est ce qu’on appelle la
classification : à partir d’un ensemble d’observations (par exemple des corpus de
textes) associées à un résultat cible (par exemple l’auteur), il est possible d’apprendre
à prédire les résultats pour de nouvelles observations (par exemple, l’auteur de
documents anonymes). En pratique, des modèles mathématiques sont déduits pour
représenter les relations entre les inputs et les valeurs attendues ou, en général, pour
estimer le mécanisme inconnu qui génère les données.

Habituellement, les problèmes sont abordés en les formulant mathématiquement : les
données sont représentées sous forme de points dans un espace de caractéristiques, où
chaque caractéristique (ou dimension) mesure un attribut particulier des instances ;
l’objectif souhaité de l’apprentissage est décrit par une fonction qui guide la sélection
du modèle. Les données d’entraînement ne sont pas simplement mémorisées. Comme
nous avons accès à un échantillon limité de la distribution sous-jacente des exemples,
la mémorisation de l’échantillon de formation entraînerait un mauvais rendement
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face à de nouvelles situations. Au lieu de cela, des informations utiles sont extraites
de l’ensemble de données afin de bien généraliser sur les données futures, c’est-à-dire
avoir de bonnes performances sur tout échantillon de la distribution inconnue.

Des exemples d’applications des algorithmes d’apprentissage machine peuvent
être trouvés dans divers domaines, de la vision par ordinateur (pour le tracking
d’objets, la reconnaissance faciale, etc.) au traitement du signal (par exemple la
reconnaissance vocale) et ainsi de suite, menant à des systèmes complexes intégrant
différents composants d’apprentissage machine, comme les assistants personnels
virtuels et les véhicules autonomes. Les algorithmes d’apprentissage machine
sont particulièrement utiles et préférables à leurs équivalents analytiques dans les
situations suivantes :

• Le problème est difficile à décrire exactement, donc aucune méthodologie
analytique n’est disponible pour le résoudre. Un exemple est la tâche de
détection d’objets dans les images. Comme les objets et les concepts qui les
définissent ne sont pas facilement dépeints (dans le sens où les descripteurs
possibles ne peuvent pas être traduits du langage naturel à des formes logiques
exhaustives) et que les conditions visuelles varient les caractéristiques des
objets, aucune méthode exacte n’existe pour ces problèmes même si la détection
des objets est une compétence innée des êtres humains.

• C’est plus rapide et moins coûteux d’apprendre une solution raffinée que
de la coder en dur, car cette dernière nécessite plus d’expertise humaine
et plus de travail. En computer graphics, par exemple, il peut être plus
pratique d’apprendre à générer des textures procédurales diverses que de
définir manuellement l’ensemble de la variété.

• Le problème peut varier avec le temps. Prenons le cas des attaques évasives
contre les détecteurs de spams. Les attaquants s’adaptent constamment aux
changements du système pour continuer d’échapper au filtre. Les solutions
d’apprentissage machine offrent des moyens dynamiques pour prendre en
compte de cette dérive conceptuelle.

Il existe plusieurs paradigmes pour résoudre ces tâches complexes. Cette thèse porte
sur l’amélioration des approches d’apprentissage locales, une famille de techniques
qui infère des modèles en capturant les caractéristiques locales de l’espace dans
lequel les observations sont représentées. L’hypothèse fondatrice de ces techniques
est que le modèle appris doit se comporter de manière cohérente sur des exemples
qui sont proches, ce qui implique que ses résultats doivent aussi changer de façon
continue dans l’espace. La localité peut être définie sur la base de critères spatiaux
(par exemple, la proximité en fonction d’une métrique choisie) ou d’autres relations
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fournies, telles que l’association à la même catégorie d’exemples ou à un attribut
commun.

On sait que les approches locales d’apprentissage sont efficaces pour capturer des
distributions complexes de données, évitant de recourir à la sélection d’un modèle
spécifique pour la tâche. Cependant, les techniques de pointe souffrent de trois
inconvénients majeurs : elles mémorisent facilement l’ensemble d’entraînement, ce
qui se traduit par des performances médiocres sur de nouvelles données ; leurs
prédictions manquent de continuité dans des endroits particuliers de l’espace ; elles
évoluent mal avec la taille des ensembles de données. Les contributions de cette
thèse examinent les pièges susmentionnés dans deux directions : nous proposons
d’introduire des informations secondaires dans la formulation du problème pour
renforcer la continuité de la prédiction et atténuer le phénomène de mémorisation
; nous fournissons une nouvelle représentation de l’ensemble de données qui tient
compte de ses spécificités locales et améliore son passage à l’échelle.

Contexte de la thèse Cette thèse a été réalisée au sein de l’équipe Data Intelli-
gence du Laboratoire Hubert Curien UMR CNRS 5516, affilié à l’Université Jean
Monnet de Saint-Etienne et l’Université de Lyon, France. Ses travaux ont été fondés
par l’Agence Nationale de la Recherche à travers les projets de l’ANR SOLSTICE.
(ANR-13-BS02-01), qui vise à concevoir de nouveaux modèles et outils pour faire face
aux tâches de vision par ordinateur, et LIVES1. (ANR-15-CE23-0026-03), qui vise
à développer des cadres d’apprentissage machine bien fondés pour l’apprentissage
avec des données observées dans des vues multiples.

Aperçu du manuscrit Ce manuscrit est organisé en trois parties principales et
plusieurs annexes. Par souci de cohérence, le corps principal de la thèse couvre les
contributions liées à l’apprentissage local. Les autres contributions relevantes sont
résumées ci-dessous et sont présentées en détail dans les annexes.

La partie I donne un aperçu du contexte scientifique et de l’état de l’art relatifs
aux travaux présentés :

• Le Chapitre 1 présente le domaine de l’apprentissage statistique, avec ses
hypothèses et ses principes, ainsi que ses défis et ses pratiques. Plus précisé-
ment, il détaille le déroulement du processus d’apprentissage des modèles
statistiques capables de décrire les observations disponibles et d’avoir de
bonnes performances sur de nouvelles données, ainsi que les cadres génériques
pour étudier les capacités de généralisation d’un modèle appris, au-delà de sa
performance empirique ;

1https://lives.lif.univ-mrs.fr/

https://lives.lif.univ-mrs.fr/
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• Le Chapitre 2 présente les principales solutions permettant d’améliorer les mod-
èles linéaires, qui tirent parti du passage á l’échelle des modèles linéaires tout en
étant capables de capturer des distributions de données complexes. Le chapitre
se concentre particulièrement sur les approches locales de l’apprentissage,
auxquelles appartiennent les contributions de cette thèse, et met en lumière
leurs intuitions, leurs avantages et leurs pièges.

Part II collecte les contributions sur l’apprentissage local basé sur le partitionnement
des données :

• Le Chapitre 3 décrit une nouvelle méthode d’apprentissage métrique pour
surmonter les problèmes bien connus de l’apprentissage métrique local, à savoir
leur tendance à la suradaptation et leur applicabilité limitée. L’approche
apprend pour chaque paire de régions de l’espace d’entrée des combinaisons
convexes de modèles locaux précédemment appris. De plus, la régularité de
la prévision est renforcée par une régularisation spatiale qui encourage les
modèles des régions voisines à être similaires. L’objectif est d’obtenir une
similitude ou une distance pour comparer n’importe quelle paire de points qui
soit adaptée aux régions auxquelles les points appartiennent. Une évaluation
théorique de l’approche proposée est réalisée dans le cadre de la robustesse
algorithmique pour la dérivation de bornes de généralisation. De plus, la
méthode est comparée empiriquement aux techniques de l’état de l’art en
termes de précision de régression sur deux tâches de régression. Ce travail a
conduit aux publications CVPR16 [219] et CAp16 [216].

• Le Chapitre 4 propose une nouvelle technique décentralisée pour
l’apprentissage collaboratif de modèles personnalisés sur un graphe
d’utilisateurs qui est à la fois efficace et présentant un coût de commu-
nication limité. Le problème d’apprentissage prend la forme d’un l1-Adaboost
régularisé capable de construire des modèles non linéaires expressifs qui
prennent en compte les singularités des données de chaque utilisateur mais qui
ont aussi tendance à suivre les décisions des utilisateurs voisins dans le graphe.
Le problème d’optimisation associé minimise conjointement l’erreur empirique
globale tout en assurant la fluidité des modèles des utilisateurs par rapport
au graphe de similarité. Nous proposons un algorithme décentralisé basé sur
l’algorithme de Frank-Wolfe, exploitant la parcimonie intrinsèque des mises à
jour pour obtenir une procédure d’apprentissage collaboratif efficace à faible
coût de communication. De plus, une procédure de découverte de graphe est
proposée pour estimer le graphe de similarité entre les utilisateurs s’il est
inconnu. L’algorithme est analysé en fonction de son taux de convergence
et de ses complexités de communication et de mémoire. Enfin, un ensemble
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d’expériences est réalisé sur un jeu de données synthétique pour démontrer
l’efficacité de la méthode proposée tant pour l’apprentissage des modèles
personnalisés que pour l’estimation du graphe de communication. Ces
contributions ont été présentées à CAp18 [215] et à MLPCD18.

La partie III rassemble les contributions basées sur les similarités des points de
repère :

• Le Chapitre 5 aborde les pièges des méthodes à noyau en introduisant une
méthode locale basée sur les Support Vector Machines qui découpe l’espace
d’entrée, projette les données sur les points de repère, et apprend conjointement
une combinaison linéaire de modèles locaux. L’approche définit un mappage
explicite à un espace latent où le problème est linéairement séparable. Ce
faisant, l’approche passe mieux à l’échelle par rapport aux SVMs standards
basés sur les fonctions à noyau. En utilisant le cadre de la stabilité uniforme,
nous montrons que notre formulation du SVMs s’accompagne de garanties de
généralisation sur le risque réel. Les expériences basées sur la configuration
la plus simple de notre modèle (i.e. sélection aléatoire des points de repère,
projections linéaires, noyau linéaire) montrent ses performances compétitives
par rapport à l’état de l’art et ouvre la porte à de nouvelles lignes de recherche
passionnantes. Ce travail a été présenté à CAp17 [220].

• Le Chapitre 6 étend la méthode proposée dans le Chapitre 5 à une classification
multi-vues. L’objectif est d’exploiter les informations complémentaires des
différentes vues et de les mettre à l’échelle linéairement en fonction de la taille
de l’ensemble des données. Les estimations de similarité par rapport à un petit
ensemble de points de repère choisis au hasard sont effectués une vue à la fois,
avant d’apprendre un SVM linéaire dans cet espace latent qui réunit toutes
les vues. Selon le cadre de stabilité uniforme, l’algorithme proposé est robuste
à de légères modifications de l’ensemble d’apprentissage, ce qui conduit à
une borne de généralisation qui dépend du nombre de vues et de repères. Ce
chapitre montre comment l’approche décrite peut être facilement adaptée
à un scénario de vues manquantes en ne reconstruisant que les similarités
avec les points de repère. Les résultats empiriques, dans les deux cadres
des vues complètes ou manquantes, mettent en évidence les performances
supérieures de la méthode proposée par rapport aux techniques de l’état de
l’art, en termes de précision et de temps d’exécution. Ce travail a été publié
sur ECML18 [221].

Dans les annexes IV, nous présentons deux contributions élaborées au cours de la
thèse mais sans rapport avec l’axe de l’apprentissage local :
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• L’Annexe A présente un cadre générique pour apprendre à partir de don-
nées faiblement étiquetées. Ce domaine couvre différents contextes tels
que l’apprentissage semi-supervisé, l’apprentissage avec des proportions
d’étiquettes, l’apprentissage multi-instance, l’apprentissage tolérant au bruit,
et ainsi de suite. L’annexe présente une nouvelle formulation du risque qui
se résume à une généralisation du risque empirique standard basé sur des
fonctions de perte dites surrogate. Le nouveau risque permet d’exprimer la
fiabilité des étiquettes dans la fonction objectif et peut être utilisé pour dériver
différents types d’algorithmes d’apprentissage, en fonction des connaissances
sur les étiquettes. Ces travaux ont été publiés sur NeurIPS16 [217].

• L’Annexe B introduit une nouvelle méthode de défense contre les attaques
évasives adversarielles sur les réseaux neuronaux profonds, basée sur des
observations pratiques. La défense proposée est facile à intégrer dans les
modèles et plus performante que les défenses de l’état de l’art : elle est conçue
pour renforcer la structure d’un DNN, rendant sa prédiction plus stable et
moins susceptible d’être trompée par des échantillons adverses. L’annexe
fait état d’une étude expérimentale approfondie prouvant l’efficacité de la
méthode contre les attaques multiples, en comparaison avec de nombreuses
défenses, à la fois en white-box et en black-box. Les travaux ont abouti
à une publication à AISEC17 [222] et à la publication de la bibliothèque
open-source ART [145] pour étudier la robustesse adversarielle des DNNs.

Enfin, nous rapportons les notions et les preuves nécessaires à l’exhaustivité de trois
chapitres :

• L’Appendice C présente les dérivations des constantes de Lipschitz pour deux
familles de métriques que nous utilisons au Chapitre 3 : des distances de Ma-
halanobis et des formes bilinéaires. L’annexe présente la pré-publication [218].

• L’Appendice D présente la dérivation de la limite supérieure de la courbure
de l’espace-produit nécessaire au Chapitre 4.

• L’Appendice E présente la dérivation du double problème lagrangien et
quelques résultats additionnels relatifs au Chapitre 5.

F.2 Résumé des chapitres

F.2.1 Chapitre 1

Nous commençons ce manuscrit en donnant un aperçu du contexte scientifique de
cette thèse : le domaine de l’apprentissage statistique englobe toutes les techniques
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visant à déduire une fonction prédictive des données à l’aide d’outils statistiques. Ce
chapitre passe en revue les principales notions et pratiques d’apprentissage, à partir
d’un nombre fini d’observations, de modèles statistiques capables d’effectuer la même
tâche sur des données futures. Nous verrons que les algorithmes génériques sont
généralement déployés pour apprendre un modèle adapté aux données disponibles.
Néanmoins, plusieurs décisions doivent être prises pour s’assurer que les modèles
appris (i) s’adaptent aux instances d’apprentissage et (ii) généralisent aux nouvelles
instances. Premièrement, les données recueillies doivent être représentatives de
la tâche et, parfois, doivent être prétraitées afin de filtrer l’information utile à
l’apprentissage ou de réduire la complexité de l’algorithme. Deuxièmement, un
algorithme d’apprentissage doit être sélectionné : cela comprend la définition de la
classe de fonctions parmi lesquelles le modèle final est choisi pour l’approximation, et
au choix de l’algorithme d’optimisation pour la recherche dans l’espace des solutions
possibles. De plus, une métrique de performance et une fonction objective sont
formulées pour guider l’apprentissage, précisant les caractéristiques souhaitées du
modèle final. Grâce à ces mesures, une évaluation empirique du modèle est réalisée
tout au long du processus d’apprentissage, à la fois pour guider et contrôler le fitting
et aussi pour estimer comment le modèle obtenu fonctionnera sur les données futures.
Afin d’obtenir une estimation des capacités réelles de généralisation du modèle
appris, l’étude empirique est réalisée en divisant l’échantillon d’apprentissage en deux
et en testant le modèle sur le sous-ensemble qui n’est pas utilisé pour l’apprentissage
du modèle. Dans un deuxième moment, nous présenterons deux cadres d’étude
des capacités de généralisation du modèle appris : les bornes de généralisation
Probablement Approximativement Correctes et la Robustesse Adversarielle. Les
deux approches reposent sur des considérations indépendantes de la performance
empirique du modèle dans l’exécution de la tâche souhaitée. Dans l’ensemble,
ils offrent des outils pratiques pour évaluer les propriétés de généralisation du
modèle appris et donnent un aperçu du pourquoi ou du pourquoi-pas un modèle
qui généraliserait.

Cet aperçu de l’apprentissage statistique ne se veut pas exhaustif : de nombreux
concepts ne seront que rapidement cités, d’autres omis, tandis que nous nous
attarderons sur tous les éléments nécessaires à la compréhension des apports de
cette thèse.

F.2.2 Chapitre 2

Dans le chapitre précédent, nous avons brièvement discuté du lien entre la distri-
bution des données et l’expressivité du modèle. Les caractéristiques des données
varient généralement dans l’espace d’entrée : la distribution globale pourrait être



198 Table des Matières

multimodale et contenir des non-linéarités. L’algorithme d’apprentissage doit être
capable de capturer et de s’adapter à ces changements afin d’avoir de bonnes perfor-
mances. Même si les modèles linéaires ne parviennent pas à décrire des distributions
complexes, ils sont réputés pour leur passage à l’échelle, en entraînement et en
test, aux grands ensembles de données en termes de nombre d’exemples et de
nombre de caractéristiques. Plusieurs méthodes ont été proposées pour tirer parti
du passage à l’échelle et de la simplicité des hypothèses linéaires afin de construire
des modèles aux grandes capacités discriminatoires. Ces méthodes améliorent les
modèles linéaires, dans le sens qu’elles renforcent leur puissance expressive grâce à
différentes techniques. L’un des principaux avantages de ces approches est qu’elles
permettent d’éviter la tâche difficile de choisir un modèle approprié à la tâche.

Dans ce chapitre, nous présentons les trois principales approches de cette ligne
de recherche. Ces approches intègrent les données dans un nouvel espace de
représentation ou s’entraînent et combinent plusieurs modèles sur l’espace d’origine.
Nous n’incluons pas une revue complète de la littérature, qui est présentée dans
les autres chapitres. Nous donnons plutôt un aperçu des notions, des idées et des
principales solutions de cette catégorie d’approches.

Nous commençons par décrire Boosting, un méta-algorithme pour apprendre des
modèles forts en utilisant des modèles faibles. Il forme un ensemble d’hypothèses,
sur des distributions modifiées de l’ensemble de formation pour assurer leur diversité,
et combine leurs prédictions, avec un vote majoritaire pondéré, pour une meilleure
performance. Les méthodes de Boosting sont largement déployées pour leur facilité
d’application, leur performance et leur fondement théorique.

La deuxième famille que nous allons présenter est la famille des méthodes à noyau,
qui apprennent des modèles linéaires sur les espaces latents induits par une fonction
noyau sélectionnée. Dans de tels espaces, le produit scalaire entre les vecteurs est
donné par la fonction du noyau choisie. Par conséquent, il n’est pas nécessaire de
définir explicitement l’espace latent et sa transformation. Nous verrons que les
modèles peuvent être formés en utilisant la matrice du noyau évalué pour toutes
les paires de points de l’ensemble d’entraînement, appelée matrice de Gram. Les
méthodes à noyau sont connues pour leur fondement théorique et leur superbe
puissance expressive. Pourtant, leur applicabilité est parfois limitée par leur coût
de calcul et de stockage. Il existe plusieurs solutions pour mettre à l’échelle les
méthodes à noyau sur de gros ensembles de données. La plupart d’entre elles
proposent des approximations de la matrice de Gram (dont la manipulation est
souvent un goulet d’étranglement), afin de réduire les coûts d’inversion et de limiter
le nombre d’évaluations des noyaux.

Enfin, nous décrivons la famille d’apprentissage localement linéaire, à laquelle
appartiennent les contributions de ce manuscrit. Les techniques d’apprentissage
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locales se concentrent sur la capture des caractéristiques locales de l’espace pour
construire des modèles expressifs. Le problème est linéarisé selon le principe de
la cohérence locale, selon lequel les prévisions doivent être cohérentes pour les
points proches. Nous présentons les deux principales solutions pour obtenir des
approximations linéaires du problème. Soit nous partitionnons les données et
apprenons un modèle linéaire par sous-ensemble de données, soit nous construisons
un espace latent en comparant les instances de l’ensemble des données et un
ensemble de points précédemment sélectionnés, répartis sur l’espace d’entrée. Nous
montrerons que les approches d’apprentissage locales ont un meilleur passage à
l’échelle que les méthodes à noyau.

F.2.3 Chapitre 3

Dans ce chapitre, nous décrivons une méthode pour surmonter les problèmes
liés à l’apprentissage local basé sur le partitionnement des données. Grâce à des
combinaisons convexes de modèles locaux régularisés en fonction des caractéristiques
topologiques de l’espace d’entrée, nous améliorons les techniques d’apprentissage
locales typiques. Ce faisant, nous obtenons des prévisions plus continues, nous
évitons le sur-apprentissage et nous améliorons les capacités discriminatoires des
modèles finaux. Nous concentrons notre travail sur l’apprentissage métrique, un
cadre permettant d’améliorer de nombreuses approches d’apprentissage machine en
optimisant les distances ou les similarités pour la tâche à accomplir afin qu’elles
reflètent les spécificités des données. Dans ce domaine, l’apprentissage métrique local
s’est déjà révélé très efficace, notamment pour prendre en compte les non-linéarités
dans les données. Cependant, il est bien connu que l’apprentissage métrique local (i)
peut entraîner un sur-apprentissage et (ii) rencontre des difficultés pour comparer
deux points qui sont assignés à deux modèles locaux différents.

Dans ce chapitre, nous abordons ces deux questions en introduisant un nouvel
algorithme d’apprentissage métrique qui combine linéairement des modèles locaux.
A partir d’une partition de l’espace en régions et d’un modèle (une fonction de
score) pour chaque région, nous abordons ces questions en définissant une métrique
entre points comme une combinaison pondérée des modèles locaux. Un vecteur
de poids est appris pour chaque paire de régions, et une régularisation spatiale est
introduite pour s’assurer que les vecteurs de poids évoluent en douceur et que les
modèles proches sont favorisés dans la combinaison. L’approche proposée, appelée
Combinaisons convexes de modèles locaux (C2LM), a la particularité d’être définie
dans un cadre de régression, de travailler implicitement à différentes échelles et
d’être suffisamment générique pour être applicable à la fois aux similarités et aux
distances.
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F.2.4 Chapitre 4

Dans ce chapitre, nous nous concentrons sur l’apprentissage de modèles locaux sur
des données partitionnées selon un critère autre que la spatialité. Plus précisément,
nous considérons les données générées par un ensemble d’agents, qui ont été collectées
par leurs dispositifs personnels afin qu’elles soient naturellement regroupées en sous-
ensembles. Comme dans le chapitre précédent, nous visons à apprendre un modèle
local par agent (en utilisant son jeu de données local), que nous indiquerons ci-après
comme personnalisé. De plus, afin d’améliorer la capacité de généralisation des
modèles optimisés, nous ajoutons des contraintes de lissage basées sur un critère de
similarité utilisateur. Cependant, contrairement à C2LM, nous optimisons tous les
modèles personnalisés dans un problème d’optimisation commun en tenant compte
à la fois de l’optimalité locale et de la fluidité globale. De plus, l’apprentissage
à partir des données personnelles soulève de nouveaux défis que nous devons
prendre en compte : les données collectées par chaque utilisateur sont extrêmement
volumineuses et potentiellement sensibles. Pour ces raisons, nous envisageons
un nouveau paradigme d’apprentissage particulièrement adapté à notre scénario.
L’apprentissage décentralisé comprend toutes les techniques travaillant sur un
graphe non hiérarchique des utilisateurs, dans lequel chaque utilisateur conserve ses
données sur place et ne communique avec ses voisins que les mises à jour du modèle.
Notre méthode exploite cette architecture décentralisée pour apprendre des modèles
personnalisés de manière collaborative sur un graphe qui reflète les similitudes
entre utilisateurs. Comme nous l’illustrerons tout au long de ce chapitre, nous
formulons notre problème sous la forme d’un l1-Adaboost régularisé et l’optimisons
en utilisant l’algorithme de Frank-Wolfe, afin d’obtenir des modèles expressifs avec
une complexité de communication minimale. Pour pallier l’absence potentielle de
connaissances de base sur les similitudes entre les utilisateurs, nous introduisons en
outre une formulation pour apprendre conjointement les modèles personnalisés et la
topologie du graphe par une procédure d’optimisation alternée.

F.2.5 Chapitre 5

A partir de ce chapitre, nous utilisons un ensemble de points - à savoir des points de
repère - répartis sur l’espace d’entrée pour saisir ses caractéristiques locales. Nous
allons explicitement former un espace latent en considérant les similitudes entre
les entrées et ces repères. Les similarités seront capturées soit par les fonctions
noyaux, soit par des approximations linéaires de celles-ci. Ce faisant, nous laissons
tomber l’hypothèse que les particularités de la distribution sont constantes pour un
sous-ensemble donné de la partition.

En raison de leurs propriétés attrayantes, telles que le passage à l’échelle à de
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grands ensembles d’entraînement, nous optimisons toujours les modèles linéaires.
Cependant, au lieu d’apprendre un modèle local par sous-ensemble de données,
nous apprenons un modèle unique pour l’ensemble de l’échantillon sur un espace
latent globalement adapté à la tâche en cours. Plus précisément, nous introduisons
une adaptation locale de la célèbre méthode des Support Vector Machines (SVMs),
que nous appelons L3-SVMs. Le principal défi sera de tirer parti du pouvoir
discriminatoire des SVMs à noyau tout en les adaptant à de grands ensembles de
données.

Simple et efficace, notre algorithme est aussi théoriquement fondé. En utilisant
le cadre de la stabilité uniforme, nous montrons que notre formulation SVM
s’accompagne de garanties de généralisation sur le risque réel. Les expériences
basées sur la configuration la plus simple de notre modèle (i.e. points de repère
choisis au hasard dans l’ensemble de formation, projection linéaire, noyau linéaire)
montrent que L3-SVMs est très compétitif par rapport à l’état de l’art et ouvre la
porte à de nouvelles lignes de recherche passionnantes.

F.2.6 Chapitre 6

Dans ce dernier chapitre de contributions, nous introduisons une méthode rapide
et théoriquement fondée pour apprendre les SVMs à points de repère (L3-SVMs)
dans un cadre de classification multi-vues. Dans un tel scénario, les instances de
l’ensemble de données sont observées dans plusieurs espaces de caractéristiques.
Nous soutenons que la clé pour s’attaquer efficacement aux problèmes multi-vues
est d’exploiter la diversité entre vues, car les différentes vues contiennent rarement,
à elles seules, suffisamment d’informations pour la tâche à accomplir. La méthode
proposée – nommée MVL-SVM – tire parti des informations complémentaires des
différentes sources d’information et s’adapte linéairement à la taille de l’ensemble
de données.

L’approche applique une projection non linéaire à l’ensemble de données au moyen
d’estimations de similarité multi-vues par rapport à un ensemble de points de repère
sélectionné, avant d’apprendre un SVM linéaire dans l’espace latent reliant toutes
les vues. Dans ce nouveau paramètre, les instances de l’échantillon et les repères
sont observés dans de multiples espaces de caractéristiques. Nous tenons compte de
cette représentation à multiples facettes dans les similitudes entre points et repères
: un noyau doit être sélectionné par vue et les similitudes doivent être calculées
une vue à la fois (pour comparer un point à un repère, les caractéristiques d’une
vue sont comparées aux caractéristiques du repère sur la même vue, et ainsi de
suite pour toutes les vues). Dans l’étape finale, en concaténant les représentations
obtenues, on parvient à obtenir un espace latent unique, commun à toutes les vues.
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A la lumière des résultats empiriques du chapitre 5, l’ensemble des points de repère
est choisi au hasard dans l’échantillon d’entraînement. De plus, malgré l’efficacité
du couplage du produit scalaire avec le partitionnement des données pour capturer
la distribution des données, et dans le but de simplifier la formulation du problème,
qui a été surchargé par la complexité accrue de la représentation des données, dans
le travail suivant, nous comptons uniquement sur le choix du noyau pour représenter
les caractéristiques de l’espace et nous ne faisons aucun clustering des données.

Nous prouvons les capacités de généralisation de notre algorithme à l’aide du cadre
de la stabilité uniforme : nous analysons d’abord la robustesse de l’approche face à
de légers changements dans l’ensemble d’apprentissage, puis nous en déduisons une
limite de généralisation étroite en fonction du nombre de vues et de repères. Dans un
second temps, nous étendons notre méthode au scénario de la vue manquante. Grâce
à la formulation de notre problème, nous montrons que nous pouvons reconstruire les
vues manquantes des points incomplets en estimant simplement les similitudes avec
les points de repère dans les vues simples sans approximer les valeurs manquantes
des éléments. Les résultats empiriques, qu’il s’agisse du cadre des vues completes ou
manquantes, mettent en évidence les performances supérieures de notre méthode,
en termes de précision et de temps d’exécution, par rapport à l’état de l’art.

F.3 Conclusions

Dans ce manuscrit, nous avons abordé le problème de l’apprentissage de modèles
capables de saisir les caractéristiques locales de la distribution des données, en
mettant l’accent sur leur généralisation, leur continuité en prédiction et leur pas-
sage à l’échelle. Nous avons contribué sur deux axes de recherche parallèles dans
l’apprentissage local : nous avons proposé deux approches basées sur le partition-
nement des données et un algorithme basé sur les similitudes avec des points de
repère, utilisable sur des données à vue unique et à vues multiples. Des études
approfondies ont été menées pour mettre en évidence l’efficacité de ces contributions
qui ont confirmé le bien-fondé de leurs intuitions. Nous avons étudié empiriquement
les performances des méthodes proposées tant sur des données synthétiques que sur
des tâches réelles, en termes de précision et de temps d’exécution, et les avons com-
parées aux résultats de l’état de l’art. Nous avons également analysé nos approches
d’un point de vue théorique, en étudiant leurs complexités de calcul et de mémoire
et en dérivant des bornes de généralisation serrées.

Outre les perspectives propres à chacune des contributions que nous avons évoquées
dans les chapitres respectifs, nous envisageons plusieurs pistes de recherche supplé-
mentaires. En ce qui concerne le terme de régularisation utilisé dans les chapitres 3
et 4 sur les similitudes entre paires de modèles locaux appris, nous réfléchissons à
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de nouvelles façons d’estimer le graphe de similitude, i.e. les poids de pénalisation
affectés à chaque paire de modèles. Il serait intéressant d’optimiser le graphe comme
dans le Chapitre 4, mais de supprimer la contrainte d’uniformité sur les degrés et le
nombre de voisins de chaque noeud. Une formulation moins contraignante aurait
l’avantage de mieux saisir les relations entre les modèles locaux et de détecter les
communautés d’utilisateurs lorsque l’on travaille avec des données personnelles.

Une autre perspective intéressante serait d’étudier les travaux de Partie III sous le
cadre de similarités (ε, γ, τ )−good présenté au Chapitre 2. En effet, ce cadre offre
un moyen bien fondé d’étudier la qualité de la linéarisation du problème induite
par les similarités avec les points de repère, comme dans nos travaux. Cependant,
il ne serait pas simple d’analyser théoriquement nos contributions à travers cette
théorie, car elle ne considère que des points de repère tirés i.i.d. de la distribution
des données et que des fonctions de similarité bornées. Ces hypothèses ne sont
pas nécessairement satisfaites dans nos travaux : nous admettons l’utilisation de
points de repère virtuels et des noyaux non-bornées tels que le noyau linéaire. De
plus, nous croyons que le fait de restreindre la fonction de similarité à un noyau de
Mercer devrait mener à de meilleurs résultats théoriques.

En outre, nous nous intéressons particulièrement aux méthodes permettant de
dessiner de bons ensembles de repères, dans le sens où ils seraient en nombre minimal
mais représentatifs de la distribution des données, et d’étudier le compromis entre
précision et passage à l’échelle, en fonction de la complexité de la tâche. Nous
soutenons qu’une telle étude sur les effets de la qualité de l’échantillon peut conduire
à des bornes de généralisation plus serrées.

Enfin, il serait interéssant d’évaluer la robustesse aux exemples adversarial de nos
méthodes, en utilisant les mesures rapportées dans le chapitre 1. En fait, nous
sommes intrigués par les meilleures robustesses observées dans d’autres modèles qui
apprennent des espaces latents par rapport aux modèles qui ne le font pas.
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Abstract In Machine Learning field, data characteristics usually vary over the space: the overall distri-
bution might be multi-modal and contain non-linearities. In order to achieve good performance, the learning
algorithm should then be able to capture and adapt to these changes. Even though linear models fail to de-
scribe complex distributions, they are renowned for their scalability, at training and at testing, to datasets
big in terms of number of examples and of number of features. Several methods have been proposed to take
advantage of the scalability and the simplicity of linear hypotheses to build models with great discriminatory
capabilities. These methods empower linear models, in the sense that they enhance their expressive power
through different techniques. This dissertation focuses on enhancing local learning approaches, a family of
techniques that infers models by capturing the local characteristics of the space in which the observations are
embedded. The founding assumption of these techniques is that the learned model should behave consistently
on examples that are close, implying that its results should also change smoothly over the space. The locality
can be defined on spatial criteria (e.g. closeness according to a selected metric) or other provided relations, such
as the association to the same category of examples or a shared attribute. Local learning approaches are known
to be effective in capturing complex distributions of the data, avoiding to resort to selecting a model specific
for the task. However, state of the art techniques suffer from three major drawbacks: they easily memorize the
training set, resulting in poor performance on unseen data; their predictions lack of smoothness in particular
locations of the space; they scale poorly with the size of the datasets. The contributions of this dissertation
investigate the aforementioned pitfalls in two directions: we propose to introduce side information in the prob-
lem formulation to enforce smoothness in prediction and attenuate the memorization phenomenon; we provide
a new representation for the dataset which takes into account its local specificities and improves scalability.
Thorough studies are conducted to highlight the effectiveness of the said contributions which confirmed the
soundness of their intuitions. We empirically study the performance of the proposed methods both on toy and
real tasks, in terms of accuracy and execution time, and compare it to state of the art results. We also analyze
our approaches from a theoretical standpoint, by studying their computational and memory complexities and
by deriving tight generalization bounds.

Résumé Dans le domaine de l’apprentissage machine, les caractéristiques des données varient générale-
ment dans l’espace des entrées : la distribution globale pourrait être multimodale et contenir des non-linéarités.
Afin d’obtenir de bonnes performances, l’algorithme d’apprentissage devrait alors être capable de capturer et
de s’adapter à ces changements. Même si les modèles linéaires ne parviennent pas à décrire des distributions
complexes, ils sont réputés pour leur passage à l’échelle, en entraînement et en test, aux grands ensembles de
données en termes de nombre d’exemples et de nombre de fonctionnalités. Plusieurs méthodes ont été proposées
pour tirer parti du passage à l’échelle et de la simplicité des hypothèses linéaires afin de construire des modèles
aux grandes capacités discriminatoires. Ces méthodes améliorent les modèles linéaires, dans le sens où elles
renforcent leur expressivité grâce à différentes techniques. Cette thèse porte sur l’amélioration des approches
d’apprentissage locales, une famille de techniques qui infère des modèles en capturant les caractéristiques locales
de l’espace dans lequel les observations sont intégrées. L’hypothèse fondatrice de ces techniques est que le modèle
appris doit se comporter de manière cohérente sur des exemples qui sont proches, ce qui implique que ses résul-
tats doivent aussi changer de façon continue dans l’espace des entrées. La localité peut être définie sur la base de
critères spatiaux (par exemple, la proximité en fonction d’une métrique choisie) ou d’autres relations fournies,
telles que l’association à la même catégorie d’exemples ou un attribut commun. On sait que les approches
locales d’apprentissage sont efficaces pour capturer des distributions complexes de données, évitant de recourir
à la sélection d’un modèle spécifique pour la tâche. Cependant, les techniques de pointe souffrent de trois incon-
vénients majeurs : ils mémorisent facilement l’ensemble d’entraînement, ce qui se traduit par des performances
médiocres sur de nouvelles données ; leurs prédictions manquent de continuité dans des endroits particuliers de
l’espace ; elles évoluent mal avec la taille des ensembles de données. Les contributions de cette thèse examinent
les problèmes susmentionnés dans deux directions : nous proposons d’introduire des informations secondaires
dans la formulation du problème pour renforcer la continuité de la prédiction et atténuer le phénomène de
mémorisation ; nous fournissons une nouvelle représentation de l’ensemble de données qui tient compte de ses
spécificités locales et améliore son évolutivité. Des études approfondies sont menées pour mettre en évidence
l’efficacité de ces contributions pour confirmer le bien-fondé de leurs intuitions. Nous étudions empiriquement
les performances des méthodes proposées tant sur des données synthétiques que sur des tâches réelles, en termes
de précision et de temps d’exécution, et les comparons aux résultats de l’état de l’art. Nous analysons également
nos approches d’un point de vue théorique, en étudiant leurs complexités de calcul et de mémoire et en dérivant
des bornes de généralisation serrées.
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