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Machine Learning

‘ Learning to perform a task from examples‘

Examples [Deng et al., 2009]:
= ER e

m-‘ju--ﬁ Possible tasks [Johnson et al., 2016]:

‘!- . H il Classification Dense Captioning
!unmlaw e pomscd
1T A T e Cat [:;:ge;:?
e = Lo 3 Eniwnfmm
AErarrseTE 6
e O o O

1. extrapolate new information
2. estimate the probability of certain events

3. make decisions



Machine Learning

‘ Learning to perform a task from examples

In practice

> examples are embedded in feature
spaces (representation)

» mathematical models are inferred X
through an algorithm
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Supervised Learning

» annotated examples S = {z; = (x; € X, y; € )},
> learn to predict the target output y; from the given input x;

Example: Author Recognition
Corpora of documents written by a given author or not

e [talo Calvino
Other

¥

example of features: histograms of words from a dictionary

N
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Supervised Learning

» annotated examples S = {z; = (x; € X, y; € V)} 1,
> learn to predict the target output y; from the given input x;

Binary Classification
yie {-1,1} Regression
yieR

3/45



Learning Procedure
1. fix the hypothesis class C

Definition
(Hypothesis class) A hypothesis class C is the set of candidate models from
which the learning algorithm selects the most suitable model for the task.

ex. set of linear classifiers f(x) = sign((0, x) + b)

45



Learning Procedure

1. fix the hypothesis class C
2. choose a loss function ¢

Definition
(Loss function) A loss function ¢ assesses the agreement between predicted
and target values.

ex. margin-based losses for f € C and z = (x, y):
hinge loss  ¢(f,z) = max(0,1 — yf(x)
exponential loss  ¢(f,z) = exp(—yf(x))

— 0-1loss
— exponential exp( — yf(z))
— hinge max(0,1 - yf(z))

yf(x)

45



Learning Procedure

1. fix the hypothesis class C
2. choose a loss function ¢

3. minimize the empirical risk on sample S = {7},

in Rs(f
e ()

Rs(f) = E s {(f,2)

1 m
— m;ﬁ(f,z;)
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Regularization

min Rs(f) + Al f]l
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Regularization

min Rs(f) + Al f]l

limited sample S drawn from data distribution D

memorization (over-fitting): have good performance only on S

generalization: have good performance on any sample from D

Occam'’s razor principle:
‘the simplest solution tends to be the best one
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Regularization

min Rs(f) + Al f]l

limited sample S drawn from data distribution D

memorization (over-fitting): have good performance only on S
generalization: have good performance on any sample from D

Occam'’s razor principle:
the simplest solution tends to be the best one

Other reasons
> to inject side-information, prior knowledge on the problem
> to correct ill-posed problems

> to converge faster

5/45



Evaluation

estimating the true risk Rp

Theoretical Guarantees

» generalization bounds on the gap between the true risk Rp
and the empirical risk Rs [Valiant, 1984]:

P (‘Rp(f) - fes(f)( < g) >1- 4.

Different Frameworks

> based on hypothesis class complexity
> considering the learning algorithm:
1. Algorithmic Robustness [Xu and Mannor, 2012]
— consistent predictions on points that belong to the same
region of the space
2. Uniform Stability [Bousquet and Elisseeff, 2002]
— similar models learned on similar training sets

6
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Contributions of the Thesis

Tackled problems:

1.

AR

6.

local learning [Zantedeschi et al., 2016d,a,c, 2017a]
decentralized learning [Zantedeschi et al., 2018a]

learning from weakly-labeled data [Zantedeschi et al., 2016b]
learning from multi-view data [Zantedeschi et al., 2018b]
graph optimization [Zantedeschi et al., 2018a]

adversarial robustness [Zantedeschi et al., 2017b]

Applications:

1.

AR

perceptual color distance [Zantedeschi et al., 2016d,a]
word similarity [Zantedeschi et al., 2016d,a]

image segmentation [Zantedeschi et al., 2016d,a]
human activity recognition [Zantedeschi et al., 2018a]

autism spectrum disorder detection [Zantedeschi et al., 2018b]



Outline

1. Introduction to Global/Local Learning

2. Local Learning by Data Partitioning
2.1 Learning Convex Combinations of Local Metrics
“Metric learning as convex combinations of local models with
generalization guarantees.”
2.2 Decentralized Adaboosting of Personalized Models
“Decentralized Frank-Wolfe Boosting for Collaborative
Learning of Personalized Models.”

3. Local Learning using Landmark Similarities

3.1 Landmark Support Vectors Machines
“l3-SVMs: Landmark-based Linear Local Support Vectors
Machines.”

4. Conclusion and Perspectives



Limitations of Global Learning

Learning linear models f(x) = sign((0, x) + b)

Q <]
0%  © 0040 24

+ great scalability at training and test time
w.r.t. m (# examples) and d (# features)

— cannot capture complex distributions
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Local Learning

how to capture local characteristics of the space?

+ keep scalability at training and test time w.r.t. m and d

+ capture complex distributions

local consistency: consistent predictions for similar points
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Local Learning

how to capture local characteristics of the space?

+ keep scalability at training and test time w.r.t. m and d

+ capture complex distributions
local consistency: consistent predictions for similar points

1. partition the data and learn a model per subset of data
— learn multiple linear models
» how to partition the data?
» how to learn the single models?

2. compare the instances to a set of points spread over the space
— learn a single linear model on a new representation

» how to select the landmarks?
» how to perform the comparisons?

10/45



Outline

1. Introduction to Global/Local Learning

2. Local Learning by Data Partitioning
2.1 Learning Convex Combinations of Local Metrics
“Metric learning as convex combinations of local models with
generalization guarantees.”
2.2 Decentralized Adaboosting of Personalized Models
“Decentralized Frank-Wolfe Boosting for Collaborative
Learning of Personalized Models.”

3. Local Learning using Landmark Similarities

3.1 Landmark Support Vectors Machines
“I3-SVMs: Landmark-based Linear Local Support Vectors
Machines.”

4. Conclusion and Perspectives
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C2LM: Learning Convex Combinations of Local Metrics

Metric Learning

learn a metric (distance or similarity) adapted to the task

Original space Latent space

Example: Mahalanobis-like distance

da(x1,x) = \/(Xl —x)TA(x1 — x2) ’ ‘

with PSD matrix A € RY" of parameters

12 /45



C2LM: Learning Convex Combinations of Local Metrics

Local Metric Learning

‘naive solution: learn a set of local metrics, one per region‘

13 /45



C2LM: Learning Convex Combinations of Local Metrics

Local Metric Learning

‘naive solution: learn a set of local metrics, one per region‘

loss of smoothness in prediction

high risk of over-fitting the local set

overall model is locally but not globally stationary

how to compare instances from different regions?

13 /45



C2LM: Learning Convex Combinations of Local Metrics

V pair of regions (R;, R;) we define t;j(x1,x2) and learn o « RF

K

tif(x1, x2) = g ke Sk(x1, x2)
k=1

i a; =) (symmetry)
i Vk, vy > 0 (positivity)

iii Zle @ = 1 (convexity)

@jjk: influence of local metric s, for pair of regions (R;, R;)

14 /45



C2LM: Learning Convex Combinations of Local Metrics

Optimization Problem

K,i K
. 1 :
arg min E Z Z Z (@’ U'kSk(Xl,Xz) — y(Xl,Xz) —|— )\1D((l) + )\25((\)

3
@ €ERK i=1,j=1 (x1,%)ER;j | k=1
K
s.t. Vi, j: g ajr=1and a; >0
k=1

— loss minimization: least absolute regression
— cluster distance regularization

— vector similarity regularization

15/45



C2LM: Learning Convex Combinations of Local Metrics

Regularization Terms

considering the topological characteristics of the input space

cluster distance regularization

K,i K
D(@)= > > (Ejoj)?

i=1,j=1 k=1

vector similarity regularization

K,i K,i

S()y=">_ > Wyl

i=1,j=1i"=1j'=1

) 2
Qrjj —(1,,‘/1'/
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Generalization Guarantees
Algorithmic Robustness Framework [Xu and Mannor, 2012]

does f have similar predictions
on z € S¢rain and on z' € Sieet?

Steps for deriving the bound:
» derive convering number of space Z =X x )
» prove Lipschitz continuity of loss ¢

» apply a concentration inequality to bound Rp — Rs

17 /45



Generalization Guarantees
Algorithmic Robustness Bound
with probability at least 1 — ¢, for the learned «

|Rp(ar) — Rs(a)| < O (7 + W)

> true risk on the underlying distribution D
» empirical risk on the training sample S

> generalization gap with
v = the maximal diameter of the clusters

K

I
arg min Z > Z ajiesi(x1, x2) — y(x1, x2)| + A D() + XaS()
weRK3 '", 1,j=1(x1,x)€R; lk=
K
s.t. Vf’j : Z(:U,\ = 1andu,r/ >0
k=1

18 /45



Experiments on Perceptual Color Distance

euclidean distance on RGB cube does not correspond to the
distance perceived by humans
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Experiments on Perceptual Color Distance

euclidean distance on RGB cube does not correspond to the
distance perceived by humans
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Experiments on Perceptual Color Distance

Dataset clustered using K-means

» 41800 pairs of color patches, taken under several viewing conditions
with their reference perceptual distance A Eyy

> 4 cameras
State of the art
> Local Metric Learning [Perrot et al., 2014]

1os New colors Los New cameras
> C2LM . > C2LM
100‘ « +—+ Perrot et al. | Loo “\.“"" #—+ Perrot et al. |
S e, 5 i PP
£ * £
3 0.95 - @ 095
g "a,..,.““ il
9 b ]
§ 0.90 § 0.90
£ £
0.85 0.85
080 5 10 15 20 25 30 080 5 10 15 20 25 30
nb clusters nb clusters
6-fold cross-validation of the color leave one camera out
patches cross-validation
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Outline

1. Introduction to Global/Local Learning

2. Local Learning by Data Partitioning
2.1 Learning Convex Combinations of Local Metrics
“Metric learning as convex combinations of local models with
generalization guarantees.”
2.2 Decentralized Adaboosting of Personalized Models
“Decentralized Frank-Wolfe Boosting for Collaborative
Learning of Personalized Models.”

3. Local Learning using Landmark Similarities

3.1 Landmark Support Vectors Machines
“I3-SVMs: Landmark-based Linear Local Support Vectors
Machines.”

4. Conclusion and Perspectives
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Dada: Decentralized Adaboost of Personalized Models

context

‘personal data = generated by a set of K users‘

sample S is partitioned by user into {Sk}K_;
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Dada: Decentralized Adaboost of Personalized Models

context

‘personal data = generated by a set of K users‘

sample S is partitioned by user into {Sk}K_;

s»-/\/*"
\ A /, /* '\\‘ T
N g . =
: / \\ %’-/ﬁ-\/%n
= % =

+ better reliability
+ harder to attack
+ easier to ensure privacy

— communication complexity is a bottleneck
— focus on sparsity

22/45



Dada: Decentralized Adaboost of Personalized Models
Objectives

1. learn local (personalized) models
2. harness similarities between users

3. enforce smoothness in prediction
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Dada: Decentralized Adaboost of Personalized Models
Objectives

1. learn local (personalized) models
2. harness similarities between users

3. enforce smoothness in prediction

undirected and weighted collaboration graph G = (V, E, W)

» V is the set of K users or nodes
» E is the set of M edges
» each agent k is connected to a subset N, C V

» W e RK” is the similarity matrix
— W)y describes the similarity between user k and user /
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Dada: Decentralized Adaboost of Personalized Models

» given a fixed set of n base functions H = {h; : X — }R}J’-’:l

» learn a set of local vectors {ay € R},

oy is the weight of user k associated with the base function h;

> to obtain binary classifiers by weighted majority vote
x = sign[>7 1 ayihi(x)]

ay = [0.1,0,-0.9, 0]

%o =
H = [h17h2ah37h4]
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Dada: Decentralized Adaboost of Personalized Models

Optimization Problem

K k-1
mﬂiq{r’l Zchk log (Z exp (—(Axak)i) ) + gz Z Wi llok — a3
oeRT k=1 I=1

s.t. : ||(\A,||1 S ﬁ

— local loss minimization of node k

> Dy is its degree
» ¢ is its confidence (proportional to my)
» Ar € R™*" s its margin matrix of entries a;j = y;hj(x;)

— vector similarity regularization

» smoothness in prediction
» communication with direct neighbors

— sparsity constraint

25 /45



Dada: Decentralized Adaboost of Personalized Models
Frank-Wolfe Optimization [Frank and Wolfe, 1956]

Block-coordinate descent: optimize over one v at each iteration
obj(a)
ensure sparse updates
» only one coordinate «;
updated at a time
» only O(|Nk|logn)
communications per update
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Dada: Decentralized Adaboost of Personalized Models
Frank-Wolfe Optimization [Frank and Wolfe, 1956]

Block-coordinate descent: optimize over one v at each iteration
obj(a)
ensure sparse updates
» only one coordinate «;
updated at a time
» only O(|N|log n)
communications per update

solve a linearization of the problem over C = [|a||1 < f:

( ) = arg min (s,glgt))
Islli<p
(t) (t—1) (t— 1 exp(— Ako‘(t 1))
g = *DkaT]k Ak+p(Dicary, Z Wk/a, oMk =

i eXP(*Aka/f*l) )i

26 /45



Theoretical Analysis

for K users, T iterations, n base functions and M edges

Convergence Rate

Dada converges in expectation with a rate O (%)

Communication Complexity

Dada has a communication complexity of O (Tlog n%)

27 /45



To recapitulate

+ improve discriminative power of local models
+ avoid over-fitting
+ achieve smoothness in prediction

C2LM Dada
Setting regression classification
Partition by features user
Learn combinations of local models base functions
Smoothing regularization term similarity graph
Other regularizations topology of input space sparsity

— learn multiple models
— rely on the goodness of the hard partition
— need to estimate the similarity matrix W
— either by using prior-knowledge or by optimizing it

28 /45



Outline

1. Introduction to Global/Local Learning

2. Local Learning by Data Partitioning
2.1 Learning Convex Combinations of Local Metrics
“Metric learning as convex combinations of local models with
generalization guarantees.”
2.2 Decentralized Adaboosting of Personalized Models
“Decentralized Frank-Wolfe Boosting for Collaborative
Learning of Personalized Models.”

3. Local Learning using Landmark Similarities

3.1 Landmark Support Vectors Machines
“l3-SVMs: Landmark-based Linear Local Support Vectors
Machines.”

4. Conclusion and Perspectives
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Local Learning using Landmark Similarities

optimize a single model capable of extracting the local
characteristics and evolving smoothly over the distribution

Definition
(Landmarks) The set of landmarks £ is a set of points
{lp € X}”;Zl used to create a new representation H.

l
2O ® Similarity principle:
® @ Vx € S described using £ and p
®
® @
® ® z pe(-) = [u(s h)y e n(s 1))
I 4
1O ® b explicit mapping from X to ‘H
X o
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Local Learning using Landmark Similarities

examples of similarity functions
For a given x € X and V x; € X:

Linear kernel

15

10

05 10 ]_‘5

Radial B

0

15

10

2
X — X1
p(x, x1) = exp (—” H2>

asis Function RBF

0150

05

10 15 20

Given v € RT,

,7
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L3-SVMs: Landmark-based Support Vector Machines

ZTo ° 00 T2 ‘ .'
oo ised » 0
o Qd?(% ° lmsuper‘.rlse N o 0"” :
° Bk x,0° o clustering S e .
o :;% >°Z< 2 @0 ° :?g : =
908550 o and landmark v fece’
B8 o selection v
z, °° In
z x
® ! ® '
projection on
the landmarks
M(-le) ﬂ(,lz)
/-:'/ joint learning . "
oe * °
" of per-cluster JUNNE I L
e — o,‘ oy
SVM in the e
projected space * s g
o o\ | R,
N Ll
@ A © ZOLY
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L3-SVMs: Landmark-based Support Vector Machines

Optimization Problem

learn a linear Support Vector Machines on the latent space H
rgmin ; Zlo1Z + 26,

s.t. y; (Hk/_,ug )T ) —& Vi=1.m
§i>0Vi=

1. projection:

pc(-) = [l k), oo, 1)) € RE
2. clustering: z; = (x;, yi, ki)
3. training: e RKL b e R

33/45



Experiments on Synthetic Data

capturing non-linearities

10 landmarks uniformly drawn from S

RBF SVM

train accuracy = 0.995, test accuracy = 0.9725

nb support vectors = 26

4 clusters, L3SVM w. dot product

train accuracy = 0.9925, test accuracy = 0.975

nb support vectors = 14

4 clusters, L3SVM w. RBF

an Cplh s "”.
ééﬁ& A‘Agﬁﬁ .0'....’ 8
A A 2g o

Ry e
® 0:0 'A%Aﬁi A&A AfA
S8 8o "."‘.2 gﬁ%& ﬁfﬁ%f&

train accuracy = 0.995, test accuracy = 0.9725

nb support vectors = 13
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Generalization Guarantees
Uniform Stability framework [Xu and Mannor, 2012]

does fs learned from S is similar to fs: learned from S’?

S=A{z1,...,zi,...,Zm} S ={z,....z" ..., zm}

S and S’ differ for one instance.

Steps for deriving the bound:
» derive stability constant of the problem w.r.t. £
» prove o-admissibility of loss ¢

» apply a concentration inequality to bound Rp — Rs
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Generalization Guarantees
Uniform Stability bound

with probability at least 1 — ¢ and learned model F = (0. b)

m

Rp(f)<Rs(f)+ O ()\M L ;) (1)

> true risk on the underlying distribution D
» empirical on the training sample S
» generalization gap with M = max,es j,cc (X, Ip)
D R .
arg min Slollz + ;; &

s.t. y; (uk_uﬁ(x,-)T + b) >1-6:;6>0Vi=1.m
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Outline

1. Introduction to Global/Local Learning

2. Local Learning by Data Partitioning
2.1 Learning Convex Combinations of Local Metrics
“Metric learning as convex combinations of local models with
generalization guarantees.”
2.2 Decentralized Adaboosting of Personalized Models
“Decentralized Frank-Wolfe Boosting for Collaborative
Learning of Personalized Models.”

3. Local Learning using Landmark Similarities

3.1 Landmark Support Vectors Machines
“l3-SVMs: Landmark-based Linear Local Support Vectors
Machines.”

4. Conclusion and Perspectives
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Conclusion

what | presented

Unified view of Local Learning

1. partition the data and learn a model per subset of data
— learn multiple linear models
» how to partition the data?
» how to learn the single models?

2. compare the instances to a set of points spread over the space
— learn single linear model on a new representation
> how to select the landmarks?
» how to perform the comparisons?

Data Partitioning  Landmark Similarities

Smoothing regularization term required not required
Stationarity local local and global
Learn multiple models required not required
Define latent space not required required
Adapted to decentralized learning yes no
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Conclusion

what | did not present

AR A .

application of C2LM to word similarity estimation
graph optimization for Dada

extension of L3-SVMs to multi-view data

works on learning from weakly-labeled data

works on adversarial robustness of Deep Neural Networks
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Perspectives

smoothing regularization

Optimization of similarity graph for Dada
1. allow for heterogeneous weights

2. enforce connectivity

Following [Kalofolias, 2016],

min Zchk,Ck(ak Sk) + Z Wigllax — ayl|>~v17 log(D + &) + X || W||5
’ k=1 k<l

Perspective: optimize hyperbolic random graphs
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Perspectives

landmark selection

Principal questions
1. how many landmarks are sufficient for the task?

2. how should they be selected?

Following [Yu et al., 2009],
L  intrinsic dimensionality of the manifold of D
Following [Balcan et al., 2008],

L o intrinsic complexity of D
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Perspectives

landmark selection

The set of landmarks £ should be

» minimal for scalability

> representative of the task for accuracy

Derivation of generalization bounds dependent on task complexity
and class complexity (estimated through £)

P (}Rp — 'QS’ > O(class complexity, task complexity, m)) <1-4.
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Perspectives

adversarial robustness

min f(x 4+ Ax) # f(x).

[Ax|<r

giant panda adversarial noise capuchin

84% confidence 67% confidence

||Ax|| < ris a bad criterion:
» all perturbations are equally accounted for

> leads to accuracy loss
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Perspectives

adversarial robustness

1. investigate robustness of approaches based on latent space:

> generative models
» RBF nets

2. investigate advantages of disentangled features:

» allow for considering a feature at a time
> easier to study error propagation
» may be easier to defend
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Thank you for your attention!

International Conferences

P Valentina Zantedeschi, Rémi Emonet, and Marc Sebban. “Fast and Provably Effective Multi-view
Classification with Landmark-based SVM.” (ECML PKDD), 2018 [Zantedeschi et al., 2018b].

P Valentina Zantedeschi, Rémi Emonet, and Marc Sebban. “Beta-risk: a new surrogate risk for learning from
weakly labeled data.” (NeurlPS), 2016 [Zantedeschi et al., 2016b].

P Valentina Zantedeschi, Rémi Emonet, and Marc Sebban. “Metric learning as convex combinations of local
models with generalization guarantees.” (CVPR), 2016 [Zantedeschi et al., 2016d)].

National Conferences

P Valentina Zantedeschi, Aurélien Bellet, and Marc Tommasi. “Decentralized Frank-Wolfe Boosting for
Collaborative Learning of Personalized Models.” (CAp), 2018 [Zantedeschi et al., 2018a].

P Valentina Zantedeschi, Rémi Emonet, and Marc Sebban. “L3.SVMs: Landmarks-based Linear Local
Support Vectors Machines.” (CAp), 2017 [Zantedeschi et al., 2017a].

P Valentina Zantedeschi, Rémi Emonet, and Marc Sebban. “Apprentissage de Combinaisons Convexes de
Métriques Locales avec Garanties de Généralisation.” (CAp), 2016 [Zantedeschi et al., 2016a].

International Workshops

P Valentina Zantedeschi, Aurélien Bellet, and Marc Tommasi. “Communication-Efficient Decentralized
Boosting while Discovering the Collaboration Graph.” (MLPCD 2), 2018.

»  Valentina Zantedeschi, Maria-Irina Nicolae, and Ambrish Rawat. “Efficient defenses against adversarial
attacks.” (AISEC), 2017 [Zantedeschi et al., 2017b].

Open-Source Software

> “Adversarial Robustness Toolbox”, Python [Nicolae et al., 2018]
https://github.com/IBM/adversarial-robustness-toolbox

P and others...
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https://github.com/IBM/adversarial-robustness-toolbox

Johnson-Lindenstrauss Projections

Lemma
Let a set of points S = {x; € RI}™,, a constant € €]0,1[ and a

number L > 8|°g€(2m), 3 a linear projection f : RY — RL such that:

(T —e)lIxi — x|l < [[F(xi) — FOxin)ll < (1 +€) [[xi — xir]] -

JL L3-SVMs
supervision none none
projection random through similarity

linear any
distance preservation yes not necessarily
task linearization no yes
dimensionality reduction L = O('c’i@) L=?
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Approach 1: Divide and Conquer

1. partition the data into K clusters { Ry }£_;
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Approach 1: Divide and Conquer

1. partition the data into K clusters { Rk }K_;

2. learn a linear model per subgroup {sk(.)}%_;
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Approach 1: Divide and Conquer

1. partition the data into K clusters { Rk }K_;

2. learn a linear model per subgroup {sk(.)}%_;

Possible criteria: spatial, class, meta-data, etc.
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Approach 1: Divide and Conquer

Drawbacks:
— loss of smoothness in prediction
— high risk of over-fitting the local set
— overall model is stationary on each subset individually but not
globally
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C2LM: Learning Convex Combinations of Local Metrics

Regularization Terms

considering the topological characteristics of the input space
djj = number of edges of shortest path

between R; and R;

Eijk = di + djk

Wijirjy = exp [—min(dy + djjr, dijr + dys;)]

Minimum Spanning Tree

ex.

Ese7 = 2, Esgo = 10

2 -9
Wse77 = e %, Wsgg9 = €
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Generalization Guarantees
Algorithmic Robustness Bound

For any § > 0 with probability at least 1 — §, we have:

2HIN2+42In1/6

|Rp(a) — /%5(04)’ < 9\&71 + 72 + B\/ -

covering number H = N(y1/2, U, ||.|l, )N (72/2, Y, |.])
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Experiments on Perceptual Color Distance

section from the RGB cube

distance levels from a given center (the dot)
clusters are marked by colors

250 = = 250

200 200

150 150

100 100

250 50 100 150 200 250

Set of local models + one global C2LM
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Experiments on Perceptual Color Distance

section from the RGB cube

- better estimation of the distance

250 — = 250

200

150

100

50 100 150 200 250 50 100 150 200 25

Set of local models 4+ one global C2LM
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Experiments on Perceptual Color Distance

section from the RGB cube

- better estimation of the distance

+ better smoothness in prediction

Set of local models 4+ one global C2LM
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Experiments on Perceptual Color Distance

mean test error

2.0

18

1.6

14

1.2

1.0

0.8

0.6

0.4

0.2

= C2LM

*—* Cosine Similarity
+—+ Global Bilinear Similarity
A—A Local Bilinear Similarities ||

10

1I5
nb clusters

20

25
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Dada: Decentralized Adaboost of Personalized Models
Frank-Wolfe Optimization

iterative algorithm over T iterations

Algorithm 1 iterative algorithms over T iterations

1: initialize {ax}% | to 0
2: fort=1to T do
3:  draw k uniformly from {1,..., K}
4. update oy following
aff) =(1- ,)/(t))ag(t—l) 4 (® S(t)
2K
where sk = [Bsign(— ( ) )e’k and A(t) = Y
5. agent k sends agf) to its neighborhood Nj.
6: end for
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Experiments on Synthetic Data

Dataset
points drawn from the two interleaving Moons dataset and rotated
following a local axis:

\ \ \

wlee B Noo, .o \ iy
o e i;‘ . AR " \ J:: ]
\ 0y, Ve e N
2‘ ~¢ N R AR
o\ u i\ % 2. N e
. @ . N v oyt
o, @ e B .
e O a N . \
.'5. \. ] Ry \..‘.. e \
® \ @ ~.-..:\‘ Fy \
\ , \ \
1 J [

» K =100 or K = 20 agents with a randomly drawn rotation
axis each;

» Wj; = exp(10cos(f;) — 1)

» d = 20 total dimensions

54 /45



Experiments on Synthetic Data

Baselines
» Personalized linear [Vanhaesebrouck et al., 2017]

» Adaboost based: global /1, global-local mixture, purely local
— n = 200 decision stumps uniformly spread over the

dimensions
5
[ n
] @
o, o
E ) T wm  wn wem o mm o
nb iterations nb iterations
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Experiments on Synthetic Data

> >
9 9
® o J 8o
= 3
S o — global I1 Adaboost S global-local mixture
2 global-local mixture g — Dada
= — purely local models ® % — purely local models
= — personalized linear = — personalized linear
— Dada — global 11 Adaboost
o Toom T 3000 B T e
nb iterations nb iterations
09 os|
> >
9 9
8o 8 o9
5 5 L \
g7 — global 11 Adaboost S global-local mixture H
© global-local mixture © — Dada
= o
Qo — purely local models @0 — purely local models
S e — personalized linear = — personalized linear
— Dada — global 11 Adaboost
D 0 700 T T 1w 190

Toom w0 o
nb iterations nb iterations

K =20 K =100
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Experiments on Synthetic Data

communication

09
z
O o [ al
=]
]
]
Io]
07
] - -
i) — personalized linear
0 — Dada exponential
— Dada
— purely local models
o5 WAL
20000 40000 60000 80000 100000 120000
communication cost
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Experiments on Synthetic Data

graph optimization

10

08

train accuracy

05 purely local models
global I1 Adaboost

test accuracy

—H

i

— personalized linear
— Dada exponential

— Dada

W0 @0 w00
nb iterations

00

o

200

R e
nb iterations

g 1006
hb iterations

000
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Experiments on Synthetic Data

graph optimization

‘‘‘‘‘‘‘‘
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Experiments on Activity Recognition

train accuracy

test accuracy

W s

— Dada

— purely local models
personalized linear gd

— global 11 Adaboost

test accuracy

personalized linear gd
Dada

purely local models

0

£
nb itera

o
tions

B00

Wo @0 @0 @0 100
nb iterations

Tooow

0000

00 G000 0000 ®0000 700000
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Experiments on MNIST

landmark selection

95
90

85
Test Accuracy (%) 80 —e— PCA
Random

| | | | 4.\7

| I
10 100 200 300 400 500 600 700784
nb landmarks

Selection Time (s)

10 100 200 300 400 500 600 700784
nb landmarks
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XOR

tr

Distribution

Linear SVM

RBF SVM

2 clusters, L3SVM w. dot product

rain accuracy = 0.645, test accuracy = 0.585
nb support vectors = 397

2 clusters, L3SVM w. RBF

‘féﬁeﬁ” *’?5

train accuracy = 0.995, test accuracy = 0.97
nb support vectors = 26

4 clusters, L3SVM w. dot product

rain accuracy = 0.9925, test accuracy = 0.97375

nb support vectors = 141

4 clusters, L3SVM w. RBF

Aﬁ;éﬂ ﬁ%@"‘ ..: -.‘
%A A‘A o2
& Aﬁ? %Ah‘;.' .t
iw"'? LE NN ﬁ 5
"' é&.A%Ag AA
g e

rain accuracy = 0.99, test accuracy = 0.965
nb support vectors = 26

%%A&Ag\ "5.’ ‘l
a A

o gy o 0”
2
o

-..' «'mwA

train accuracy = 0.9925, test accuracy = 0.9
nb support vectors = 14

train accuracy = 0.995, test accuracy = 0.9725
nb support vectors = 13
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Swissroll Distribution

Linear SVM RBF SVM 2 clusters, L3SVM w. dot product
a ®, a °, 24 ®, LA
3 B a g&é@u 2 4 8 gf&;ﬂ giﬂ @d‘&;ﬁ ‘ﬁié
E g as,  Ahgad e
L dﬁ« P s %, XY
-3 - 0
§ Am ge 4 Am
LU N S a 4y a
N S s N
s b8 s a2 28 4 S5 ey
@’ Iy 2, hg’ Iy
A A a A A
VN s A AL A VN
train accuracy = 0.575, test accuracy = 0.52375 train accuracy = 0.7425, test accuracy = 0.72125 train accuracy = 0.5875, test accuracy = 0.52375
nb support vectors = 296 nb support vectors = 350

nb support vectors = 384

100 clusters, L3SVM w. RBF

2 clusters, L3SVM w. RBF 100 clusters, L3SVM w. dot product
A DA 88 AA a DA
4 sp e Gl 20 a 224 4 ?*eezu 205
oo i A he sa o ﬁ ,‘A 4
S bt v e : N
Y e AAAA,si 8%, Y Y3 AAAA A
A
an A‘i" CYON g&A A8, gﬁA gﬁA
LS A . S 2 A » o
A
B I R N o8 o T S
3N
B A N—( IS IS
an B A A A 2s A A
N N NN NN N
train accuracy = 0.905, test accuracy = 0.8525

train accuracy = 0.8725, test accuracy = 0.82625

nb support vectors = 217 nb support vectors = 171

train accuracy = 0.69, test accuracy = 0.657.
nb support vectors = 300
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Experiments on Real Datasets

F#£training #testing #features #classes #models

SVMGUIDE1 3089 4000 4 2 100

1JCNN1 49990 91701 22 2 100

USPS 7291 2007 256 10 80

MNIST 60000 10000 784 10 90

PASCAL VOC 2007 5011 4952 4096 20 20
SVMGUIDE1 1JCNN1 USPS MNIST PASCAL VOC
RBF-SVM 96.53 Ix 97.08 Ix 94.07 Ix  96.62 Ix  96.9 1x
Poly-SVM  06.35 2.1x 92.65 52x  N/A  NJ/A NJ/A N/A NJA N/A
LinearrSVM 0538 0.8x 89.68 140.5x 91.72 30.6x 91.8 1125x 96.7 12.1x
CSVM 95.05 0.3x 9635 452x N/A N/A NJA N/A  NJA N/A
LLSVM 94.08 1.7x 9293 16.8x 7569 0.4x 88.65 1.9x N/A N/A
ML3 96.68 0.3x  97.73 59x  93.22 1.1x 97.04 2.1x 96.5 17.7%
L3-SVMs 0573 1.8x 95.74 7.4x 9212 1.3x 95.05 9.8x 967  19.2x

Table: Testing Accuracies (%) and Training Speedups w.r.t.

RBF-SVM.
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Adversarial Examples

X
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